Powered by OpenAIRE graph
Found an issue? Give us feedback

Shadow Robot Company Ltd

Shadow Robot Company Ltd

28 Projects, page 1 of 6
  • Funder: UK Research and Innovation Project Code: EP/N020421/1
    Funder Contribution: 100,549 GBP

    Tactile perception is essential for robotic systems to perform tasks efficiently involving physical interactions with the environments such as carrying out assembly tasks or manipulating objects in manufacturing, in particular in uncontrolled environments. Research has shown that the efficiency of human manipulation is largely based on the sophisticated tactile afferents distributed across the human skin. If the tactile sensory system of human skin is neurologically damaged, a person significantly loses the efficiency for manipulation. Human tactile perception is still far beyond that of tactile sensing technology hitherto. To narrow the gap, extensive research has been carried out to develop robot skin with distributed tactile sensing elements (tactels). The existing tactile array sensing methods commonly utilize piezoresistive or capacitive materials, strain gauges, conductive elastomer or liquid and fiber-optics. While tactile sensing technologies have dramatically advanced in regards to spatial resolution, sensitivity, sensor flexibility and stretch-ablity, one major unsolved problem is to provide distributed tactile sensing capability to complex structural surfaces, which are normally described use high-order polynomial geometric equations, such as quadratic ellipsoidal surfaces, especially with small radii.The existing flexible and stretchable tactile array sensors are fabricated in the form of a film, thus difficult to be attached to those high-order polynomial surfaces. Since those surfaces are commonly used in various engineering designs, this problem significantly reduces the applicability of existing tactile array sensing methods. This project proposes a novel method to solve this bottleneck by utilizing 3D printing technique to embed distributed sub-millimeter soft material channels within that structure. Forces applied to the structure surface will induce micro deformations of the soft material channels. Thus those soft material channels act as tactile afferent fibres within human tissue providing distributed tactile information on the structure. Through the project, we aim to develop the general principles of using the proposed method for accurate and robust tactile sensing. Compared to existing tactile array sensors, the proposed method provides the capability of placing the tactels on a structure with arbitrary surfaces according to bespoke designs; it requires simple fabrication processes and is easy to be applied to miniaturized structures; the proposed method is also cost effective for providing large number tactile sensing elements. The immediate project success will be assessed based on the achieved tactile sensing performance compared to the current state of the art commercial tactile array sensors, as well as the reliability and adaptiveness of the proposed method demonstrated in our exemplary application with SHADOW. The long-term success of the project will be measured by the takeup of the proposed sensing principles that we shall develop by both the academic communities and industries.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T033517/2
    Funder Contribution: 311,503 GBP

    Handling flexible materials is common in industrial, domestic and retail applications, e.g., evaluating new fabric products in the fashion industry, sorting clothes at home and replenishing shelves in a clothing store. Such tasks have been highly dependent on human labour and are still challenging for autonomous systems due to the complex dynamics of flexible materials. This proposal aims to develop a new visuo-tactile integration mechanism for estimating the dynamic states and properties of flexible materials while they are being manipulated by robot hands. This technique offers the potential to revolutionise the autonomous systems for handling flexible materials, allowing inclusion of their automated handling in larger automated production processes and process management systems. While the initial system to be developed in this work is for handling the textiles, the same technology would have the potential to be applied in handling other flexible materials including fragile products in the food industry, flexible objects in manufacturing and hazardous materials in healthcare.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R011397/1
    Funder Contribution: 100,834 GBP

    An exciting new area of chemistry involves making new "smart" materials that can interact with their environment to produce soft robots. These pioneering systems can respond to a huge range of inputs with large deformations to perform tasks that are difficult or impossible to achieve with traditional technology. Smart materials capable of 'mechanical intelligence' - the ability to at once sense and respond to a specific stimulus in a controlled and defined manner, without the aid of electronics or additional control systems - has the potential to revolutionise biomedical devices. Imagine artificial muscles that can detect small changes in their environment to power artificial limbs, or surgical instruments that can sense and move around delicate areas of the body. The chemistry used to develop these smart materials can be used to tune specific properties - making the individual materials perfect for the specific task in hand. PhotoSMART aims to do just that, to produce an entirely new class of smart materials that move in response to light, and whose properties can be tuned through changing the chemistry of the system. Crucially these smart materials will work using visible light rather than damaging UV light - something that is vital to applications in biomedical environments. Certain organic molecules respond to light by producing huge rearrangements in their chemical structure, causing molecular-scale movement. The exact wavelength at which they respond can be tuned by changing the chemistry of the molecule. PhotoSMART will involve integrating this switching functionality with flexible polymer materials that can be readily engineered. Subsequently, the active polymer materials will be carefully structured to amplify the molecular-scale motion to produce large movements that can perform useful tasks in the world around us.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M002527/1
    Funder Contribution: 1,085,910 GBP

    The societal needs such as helping elderly and rapid technological advances have transformed robotics in recent years. Making robots autonomous and at the same time able to interact safely with real world objects is desired in order to extend their range of applications to highly interactive tasks such as caring for the elderly. However, attaining robots capable of doing such tasks is challenging as the environmental model they often use is incomplete, which underlines the importance of sensors to obtain information at a sufficient rate to deal with external change. In robotics, the sensing modality par excellence so far has been vision in its multiple forms, for example lasers, or simply stereoscopic arrangements of conventional cameras. On other hand the animal world uses a wider variety of sensory modalities. The tactile/touch sensing is particularly important as many of the interactive tasks involve physical contact which carry precious information that is exploited by biological brains and ought to be exploited by robots to ensure adaptive behaviour. However, the absence of suitable tactile skin technology makes this task difficult. PRINTSKIN will develop a robust ultra-flexible tactile skin and endow state-of-the-art robotic hand with the tactile skin and validate the skin by using tactile information from large areas of robot hands to handle daily object with different curvatures. The tactile skin will be benchmarked against available semi-rigid skins such as iCub skin from EU project ROBOSKIN and Hex-O-Skin. The skin will be validated on at least two different industrial robotic hands (Shadow Hand and i-Limb) that are used in dexterous manipulation and prosthetics. The robust ultra-thin tactile skin will be developed using an innovative methodology involving printing of high-mobility materials such as silicon on ultra-flexible substrates such as polyimide. The tactile skin will have solid-state sensors (touch, temperature) and electronics printed on ultra-flexible substrates such as polyimide. The silicon-nanowires based ultra-thin active-matrix electronics in the backplane will be covered with a replaceable soft transducer layer. Integration of electronic and sensing modules on a foil or as stack of foils will be explored. 'Truly bottom-up approach' is the distinguishing feature of PRINTSKIN methodology as the development of tactile skin will begin with atom by atom synthesis of nanowires and finish with the development of tactile skin system - much like the way nature uses proteins and macromolecules to construct complex biological systems. This new technological platform to print tactile skin will enable an entirely new generation of high-performance and cost-effective systems on flexible substrates. Fabrication by printing will have important implications for cost-effective integration over large areas and on nonconventional substrates, such as plastic or paper. Printing of high-performance electronics is also appealing for mask-less approach, reduced material wastage, and scalability to large area. The proposed programme thus has the potential to emulate yet another revolution in the electronics industry and trigger transformation in various sectors including, robotics, healthcare, and wearable electronics.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T027746/1
    Funder Contribution: 373,312 GBP

    It is well-known from the biomechanics and ergonomics research that material handling tasks in industry can often cause harmful working postures, potentially leading to musculoskeletal disorders and occupational injuries. Wearable robotic systems like supernumerary (additional) robotic limbs augment human bodies with extra mobility and manipulation capabilities, and they can increase the efficiency when conducting bulky material handling tasks and allow older workers to maintain their jobs. This project aims to create novel techniques to address ergonomics and safety of supernumerary robotic limbs. A novel posture and balance support wearable robotic system will be created and its control will be integrated with the supernumerary robotic limbs for material handling. The scope of the project is to study how the ergonomics of the supernumerary limbs for material handling can be improved through additional back and balance support. The implementation will be based on creating and using innovative mechatronic technologies (soft robotic actuation and sensing; light-weight cable-driven active mechanisms; haptic feedback; human-centred interactive control) and posture assessment and data processing methods (distributed wireless sensing; Cloud data storage; personalised machine-learning based data analysis and decision-making). The outcomes of the projects will have direct impacts on the UK manufacturing, logistics and agriculture industries (>15% of GDP, employing more than 10 million people), through development and evaluation of efficient and safe material handling robotic assistive technologies.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.