Powered by OpenAIRE graph
Found an issue? Give us feedback

FADA-CATEC

FUNDACION ANDALUZA PARA EL DESARROLLO AEROESPACIAL
Country: Spain
46 Projects, page 1 of 10
  • Funder: European Commission Project Code: 287617
    more_vert
  • Funder: European Commission Project Code: 101189723
    Overall Budget: 12,050,000 EURFunder Contribution: 9,998,960 EUR

    AEROSUB will develop world-class robotic solutions for different wind energy operating scenarios – fixed and floating offshore wind farms, promoting innovations for operation and maintenance (O&M) procedures to foster the competitiveness and sustainability of renewable energy production in challenging environments. AEROSUB will demonstrate the added value of robotics deeply integrated with advanced AI and data analytics technologies and their potential of reducing the eCO2 emissions of O&M operations by up to 15M tonnes, enabling cost savings by 2,400€/MW/year and lowering the levelized cost of electricity (LCOE) of offshore wind energy by 2.5%. By deploying an orchestration of multiple robotic platforms, including Uncrewed Fleet Carrier (UFC), Unmanned Surface Vehicle (USV), Remotely Operated Vehicles (ROVs), long endurance aerial drones (UAS), and Unmanned Aerial Vehicles (UAVs), and optimizing human-robot and robot-robot collaboration, AEROSUB aims to reduce the on-site humans’ exposure to dangerous and strenuous environments. Large scale pilots related to monitoring, inspection, cleaning, and maintenance of structures below and above water line will be performed autonomously by AEROSUB solutions, which requires introducing AI-based features for enhancing perception and on-platform decision-making capabilities, improving collaborative navigation, manipulation, and mission planning. AEROSUB is proposing the first fully unmanned robotic solution for both aerial and underwater inspection and intervention, demonstrated in real offshore wind farm, to show an increased O&M operational efficiency of 40%, reducing of the associated downtime by 60% as well as the risk exposure of workers by 90%. Digital twin (DT) and AI solutions for automated information analysis of operational data, collected by remote robotic platforms in >30 operations, will increase the reactivity, responsiveness and intelligibility of the O&M operations: reducing the human burden by 80% to monitor

    more_vert
  • Funder: European Commission Project Code: 601205
    more_vert
  • Funder: European Commission Project Code: 779411
    Overall Budget: 3,897,020 EURFunder Contribution: 3,897,020 EUR

    HYFLIERS will develop two prototypes for the first worldwide hybrid aerial/ground robot with a hyper-redundant lightweight robotic articulated arm equipped with an inspection sensor, together with supporting services for efficient and safe inspection in industrial sites. Energy savings will be achieved by minimizing the time of flight and by performing the inspection while attached to the pipe. To ensure accurate positioning, guidance, landing and rolling on constrained surfaces such as pipes, the robot will rely on a control system also integrating environment perception, particularly for landing on the pipes, and aerodynamic control taking into account aerodynamic effects of the pipes. The system will also have multi-media interfaces for teleoperation, automatic collision detection and avoidance; a trajectory planning system that will take into account aerodynamic effects in addition to kinematic and dynamic models; and a mission planning system to optimize the use of the robot in the inspection. The technology results will be validated in the inspection of pipes, which is a very relevant short-term application. HYFLIERS will decrease the cost and risks of current human inspection in production plants, such as oil and gas, where it is estimated that about 50 000 pipe thickness measurement points are needed within a 3 to 5 years interval. HYFLIERS will eliminate the risks of accidental falls and the cost associated to the use of man-lifts, cranes, scaffold or rope access, which is many orders of magnitude larger than the measurement cost by itself. Taking into account that about 60% to 75% of inspection costs in this type of facilities is dedicated to ultrasonic thickness measurements, the project will concentrate on these measurements. The results of the project could be also applied to other industrial scenarios, such as power generation plants.

    more_vert
  • Funder: European Commission Project Code: 101140567
    Overall Budget: 33,023,700 EURFunder Contribution: 25,705,000 EUR

    The aim of HERFUSE proposal is to design innovative fuselage and empennages suitable for the future Hybrid-Electric Regional aircraft (HER) that will contribute to the overall target to reduce Green House Gases (GHG) emissions. HERFUSE will study the challenges on fuselage and empennages layout, material, components, manufacturing and assembly derived by integration of the relevant fuselage systems for HER as defined in the SRIA for a Hybrid-Electric Regional Aircraft and in HER-01 topic. HERFUSE integrates features and components necessary to regional hybrid-electric propulsion and complementary systems as well as improves weight, durability, aerodynamic efficiency and operational issues. The technologies and solutions matured in this project shall be aligned and feed with models, analyses and actual test data HERA project on regional aircraft (HORIZON-JU-CLEAN-AVIATION-2022-01-TRA-01). HERFUSE technologies, manufacturing and assembly of critical components will make feasible achieving the targeted performance gains of HER enablers such as low GHG energy sources (batteries and fuel cells), their storage (probable liquid in hydrogen case), their distribution and management, operational and safety features, thermal management provisions, electrical and thermal insulation. Technical solutions set by the HERFUSE will contribute then to the overall target and studies performed at aircraft level in HERA to reduce emissions. Namely, HERFUSE integration requirements will be concurrent and complementary to the aircraft-level ones set into HERA.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.