Powered by OpenAIRE graph
Found an issue? Give us feedback

Care Peru

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: NE/S013296/1
    Funder Contribution: 405,124 GBP

    Meltwater from glaciers in the Peruvian Andes provides an important and reliable water supply for local and downstream communities for domestic purposes, hydropower, subsistence and commercial agriculture, and industry; and to support rare, high-elevation wetlands and wider ecosystem functioning. However, this long-term, reliable water supply is threatened by increasing temperatures and changing precipitation patterns in the mountainous areas, resulting in shrinking of glaciers and changes in the amount and seasonality of meltwater runoff. A warming climate is also associated with an increasing frequency of extreme hydrological events, such as floods and droughts. Coupled with the stresses of Peru's rapid urbanisation and economic development, these changes are expected to lead to significant water scarcity, with the potential to inhibit economic growth and degrade vulnerable ecosystems (and the services they provide), which in turn will increase social vulnerability, adversely affect the equitable sharing of resources, increase social conflicts, and destabilise Peruvian societies (from local communities to the large coastal urban centres). Peru GROWS aims to increase the resilience of Peruvian communities and ecosystems to hydrological changes arising from shrinking glaciers in the Andes. Working in the Rio Santa catchment - the most glacierised catchment of Peru - we will map the current socio-ecological system to identify where, and how, different communities and ecosystems are exposed to risks from water availability. We will then integrate field measurements and remote-sensing data into physically-based glacier and hydrological models, to simulate the past, present, and possible future changes (to the end of the twenty-first century) to the climate, the glaciers, and to river flows (including amounts, seasonality, and inter-annual variability). In close partnership with local stakeholders, we will exploit this new knowledge to explore the direct and indirect impacts of projected change in glacier behaviour on different communities in the catchment, with a focus on food security, aquatic and terrestrial ecosystems, and energy production. We will provide information on the current state of the water balance and hotspots of potential water scarcity/trade-offs that can be easily understood by key stakeholders and will provide the basis for adaptation planning at local and regional level. Key stakeholders and end-users have been closely involved in the design of Peru GROWS and will co-deliver the research. Two key NGOs, with a long history of work in this region (CARE and the Mountain Institute) as well as social scientists at the National Glacier and Mountainous Ecosystems Research Institute and the Pontifical Catholic University of Peru, will act as an interface with the local stakeholders, especially vulnerable rural communities. Together, they will have a key role in co-designing appropriate adaptation strategies for water resources management and agriculture that will create lasting positive impact. With this, we lay a firm foundation from which multiple impacts can emerge during and after the project.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/S013318/1
    Funder Contribution: 506,620 GBP

    The Peruvian Andes is home to 71% of the world's tropical glaciers, and the meltwater they supply is an essential resource for people downstream who depend on it for irrigation and sanitation. Further, hydropower plants driven by glacial meltwater provide more than 40% of Peru's electricity. However, Peru's glaciers are receding rapidly, threatening this supply, as well as releasing sediment to valley areas and revealing topographic depressions that may become natural reservoirs for glacier runoff. These thawing landscapes are also very active and can pose risks to downstream people and infrastructure. PEGASUS will assess the opportunities and threats that rapidly evolving landscapes, and natural resources, will bring to the people and businesses of three glacierised Cordilleras of the Peruvian Andes - Urubamba, Vilcabamba and Vilcanota - and make recommendations that will maximise the potential prosperity that can be gained in the face of continued environmental change. Modelling the climate of mountain catchments such as those in Peru is complex because of the interaction of large-scale weather systems with local-scale winds and extreme relief. Uncertainties in modelling the climate feed into projections of glacier change, which themselves are limited by a lack of data on previous glacier behaviour for calibration, and downstream river flows for validation. Robust climate modelling is also required for predictions of permafrost (freezing) heights, which are a key control on ice and bedrock stability, and thus avalanche risk. PEGASUS will produce new and refined projections of climate that will drive cutting edge glacier and permafrost models, to yield firm predictions of how the glaciers and freezing levels will change on a 5-yearly interval from now until the end of the century. As the glaciers recede and hillslopes become more active, sediment will be released into the valleys, and lakes will develop where ice existed. Some of the sediment will be trapped within these glacial lakes, and some will be transferred downstream by river flows. The rate of sediment release by glaciers in advanced states of recession is poorly known, and the role of lakes in capturing the sediment is also poorly quantified. PEGASUS will perform field measurements and modelling to improve understanding of the role of glacial lakes in removing, conveying and storing sediment being released from the glaciers, and characterise the impact this will have on downstream water quality and critical hydropower infrastructure. The locations of future glacial lakes can be predicted by modelling the thickness of the current glaciers and identifying subglacial depressions that will be revealed as the ice recedes. Using a Digital Elevation Model (DEM) of this ice-free terrain, it is possible to make a quantitative assessment of the hazard that these new lakes, as well as existing glacial lakes, pose to downstream areas if they were to burst catastrophically. PEGASUS will carry out this assessment for the largest lakes in the Urubamba-Vicabamba-Vilcanota study area and then undertake additional fine-resolution and physically-based numerical modelling to robustly quantify the effects of flooding and debris flows on people, land, the downstream river dynamics, and hydropower infrastructure. PEGASUS will then identify the barriers and opportunities that exist to the use of these lakes for water storage and hydropower development. This assessment will integrate consultations with government (CORECC), a large hydropower company (EGEMSA) and, crucially, communities living in the catchments of the lakes we have analysed. The recommendations that follow will provide information on the sustainability of existing and future hydropower schemes, how to manage water use in future decades and formulate policies that reflect the needs of all stakeholders, and the potential hazards that unstable mountain environments may pose to lives and livelihoods in future years.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.