Powered by OpenAIRE graph
Found an issue? Give us feedback

National Infrastructure Commission

National Infrastructure Commission

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: NE/V013106/1
    Funder Contribution: 6,703,570 GBP

    Observed, Strategic, sustained action is now needed to avoid further negative consequences of climate change and to build a greener, cleaner and fairer future. According to the Intergovernmental Panel on Climate Change the rise in global temperature is largely driven by total carbon dioxide emissions over time. In order to avoid further global warming, international Governments agreed to work towards a balance between emissions and greenhouse gas removal (GGR), known 'net zero', in the Paris Agreement. In June 2019 the UK committed to reaching net zero emissions by 2050, making it the first G7 country to legislate such a target. Transitioning to net zero means that we will have to remove as many emissions as we produce. Much of the focus of climate action to date has been on reducing emissions, for example through renewable power and electric vehicles. However, pathways to net zero require not just cutting fossil fuel emissions but also turning the land into a net carbon sink and scaling up new technologies to remove and store greenhouse gases. This will require new legislation to pave the way for investment in new infrastructure and businesses expected to be worth billions of pounds a year within 30 years. This challenge has far-reaching implications for technology, business models, social practices and policy. GGR has been much less studied, developed and incentivised than actions to cut emissions. The proposed CO2RE Hub brings together leading UK academics with a wide range of expertise to co-ordinate a suite of GGR demonstration projects to accelerate progress in this area. In particular the Hub will study how we can (1) reduce technology costs so that GGR becomes economically viable; (2) ensure industry adopts the concept of net zero in a way that will maintain and create jobs; (3) put in place sensible policy incentives; (4) make sure there is social license for GGR (unlike fracking or nuclear); (5) set up regulatory oversight of environmental sustainability and risks of GGR; (6) understand what is required to achieve GGR at large scale and (7) guarantee there are the skills and knowledge required for all this to happen. Building on extensive existing links to stakeholders in business, Government and NGOs, the Hub will work extensively with everyone involved in regulating and delivering GGR to ensure our research provides solutions to strategic priorities. We will also encourage the teams working on demonstrator technologies to think responsibly about the risks, benefits and public perceptions of their work and consider the full environmental, social and economic implications of implementation from the outset. CO2RE will seek to bring the GGR community in the UK as a whole closer together, functioning as a gateway to UK inter-disciplinary research expertise on GGR. We will inform, and stay informed, about the latest developments nationally and internationally, and reach out to engage the wider public. In doing so we will be able to respond to a rapidly evolving landscape recognising that technical and social change are not separate, but happen together. To accelerate and achieve meaningful change, we will be guided by consultation with key decision-makers and the general public, and set up a £1m flexible fund to respond to priorities that emerge with the help of the wider UK academic community. Ultimately we will help the UK and the world understand how GGR can be scaled up responsibly as part of climate action to meet the ambition of net zero.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S016813/1
    Funder Contribution: 7,290,960 GBP

    In Europe, the total value of sewer assets amounts to 2 trillion Euros. The US Environmental Protection Agency estimates that water collection systems in the USA have a total replacement value between $1 and $2 trillion. Similar figures can be assigned to other types of buried pipe assets which supply clean water and gas. In China alone 40,000 km of new sewer pipes are laid every year. However, little is known about the condition of these pipes despite the pressure on water and gas supply utility companies to ensure that they operate continuously, safely and efficiently. In order to do this properly, the utility operator must identify the initial signs of failure and then respond to the onset of failure rapidly enough to avoid loss of potable water supply, wastewater flooding or gas escape. This is attempted through targeted inspection which is typically carried out through man-entry or with CCTV approaches, although more sophisticated (e.g. tethered) devices have been developed and are used selectively. Nevertheless, and in spite of the fact that the UK is a world leader in this research area, these approaches are slow and labour intensive, analysis is subjective, and their deployment disrupts traffic. Moreover, because these inspections are necessarily infrequent and only cover a small proportion of the pipe network, serious degradation is often missed and pipe failures occur unexpectedly, requiring emergency repairs that greatly disrupt life of the road and adjacent buried utility infrastructure. This Programme Grant proposes a radical change in terms of buried pipe sensing in order to address the issues of pipe inspection and rehabilitation. It builds upon recent advances in sensors, nano- and micro-electronics research, communication and robotic autonomous systems and aims to develop a completely new pervasive robotics sensing technology platform which is autonomous and covers the entire pipe network. These robots will be able to travel, cooperate and interrogate the pipes from the inside, detect the onset of any defects continuously, navigate to and zoom on sub-millimetre scale defects to examine them in detail, communicate and guide any maintenance equipment to repair the infrastructure at an early sign of deterioration. By being tiny, they do not present a danger of being stuck, blocking the pipe if damaged or run out of power. By being abundant, they introduce a high level of redundancy in the inspection system, so that routine inspection can continue after a loss of a proportion of the sensors in the swarm. By making use of the propagation of sonic waves and other types of sensing these robots can monitor any changes in the condition of the pipe walls, joints, valves and lateral connections; they can detect the early development and growth of sub-millimetre scale operational or structural faults and pipe corrosion. An important benefit of this sensing philosophy is that it mimics nature, i.e. the individual sensors are small, cheap and unsophisticated, but a swarm of them is highly capable and precise. This innovation will be the first of its kind to deploy swarms of miniaturised robots in buried pipes together with other emerging in-pipe sensor, navigation and communication solutions with long-term autonomy. Linked to the related previous work, iBUILD (EP/K012398), ICIF (EP/K012347) and ATU's Decision Support System (EP/K021699), this Programme Grant will create the technology that has flexibility to adapt to different systems of governance globally. This work will be done in collaboration with a number of industry partners who will help to develop a new set of requirements for the new pervasive robotic sensing platform to work in clean water, wastewater and gas pipes. They will support the formation and operation of the new research Centre of Autonomous Sensing for Buried Infrastructure in the UK and ensure that the results of this research have strong practical outcomes.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R021333/1
    Funder Contribution: 673,171 GBP

    Investing in new European interconnection capacity is one strategy to integrate renewables and nuclear power stations in the electricity systems of GB and Ireland, by maximising their value through exports and meeting demand peaks through imports. This project aims to assess the value of UK interconnectors to the EU-27 and Norway, examining both the GB and the Irish Single Electricity markets, by investigating five hypotheses: 1. Expanding GB-linked interconnectors would reduce the cost of electricity for both the UK and the EU-27. 2. The operational value of interconnectors will be affected by post-Brexit market relationships (e.g. the GB relationship with the European Energy Union and the Irish Single Electricity market). 3. Balancing markets could be an important future source of revenue for interconnectors. 4. Previous interconnection modelling studies have misinterpreted spurious correlations caused by continent-wide increases in renewables and other system evolutions. 5. The optimal level of investment in GB and I-SEM interconnectors, and between Northern Ireland and the Republic of Ireland, in terms of both security and cost, will be affected by the outcome of Brexit negotiations. The ETM-UCL European energy system model and the ANTARES European electricity dispatch model are being used to assess the potential benefits of existing and new interconnection between the UK and the EU-27 and Norway, for a range of post-Brexit policy environments. The impact of interconnectors and renewables on electricity system stability is being assessed. The GCDCN model, adapted from neuroscience, is being developed to identify causal relationships between interconnection investments and price variations across UK and EU-27 markets. This provides a foundation for improving regulatory models and investment business case analyses.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.