
W H Partnership
W H Partnership
4 Projects, page 1 of 1
assignment_turned_in Project2020 - 2020Partners:W H Partnership, Donghua University, NewCell Technologies Ltd, HAYDALE LIMITED, IITD +17 partnersW H Partnership,Donghua University,NewCell Technologies Ltd,HAYDALE LIMITED,IITD,NWL,Magneto Special Anodes B.V.,NewCell Technologies Ltd,Dong Hua University,Ghent University, Gent, Belgium,Tata Group UK,Magneto Special Anodes B.V.,PSU,Loughborough University,Indian Institute of Technology (Delhi),TISCO,Haydale Limited,W H Partnership,Pennsylvania State University,Tata Steel (United Kingdom),Northumbrian Water Group plc,Loughborough UniversityFunder: UK Research and Innovation Project Code: EP/N009746/2Funder Contribution: 113,356 GBPThe current fuel production and related industries are still heavily reliant on fossil fuels. BP's "Statistical Review of World Energy" published in 2014 states that the world has in reserves 892 billion tonnes of coal, 186 trillion cubic meters of natural gas, and 1688 billion barrels of crude oil. Although these represent huge reserves, taking into account today's level of extraction, would mean that coal would be exhausted in 113 years and natural gas and crude oil would be extracted by 2069 and 2067, respectively. In the meanwhile, the CO2 atmospheric concentration has increased from 270 ppm before the industrial revolution to 400 ppm today and its annual release is predicted to exceed 40GT/year by 2030. As the world population increases, breakthrough technologies tackling both fuel supply and carbon emission challenges are needed. The use of CO2 from, or captured in industrial processes, as a direct feedstock for chemical fuel production, are crucial for reducing green house gas emission and for sustainable fuel production with the existing resources. The aim of this project is to develop a breakthrough technology with integrated low cost bio-electrochemical processes to convert CO2 into liquid fuels for transportations, energy storage, heating and other applications. CO2 is firstly electrochemically reduced to formate with the electric energy from biomass and various wastes and other renewable sources by Bioelectrochemical systems (BES). The product then goes through a biotransformation SimCell reactor with microorganisms (Ralstonia) specialised in converting formate to medium chain alkanes using a Synthetic biology approach. The proposed technology will develop around the existing wastewater treatment facilities from for example, petroleum refineries and water industries, utilising the carbon source in wastewater, thus minimising the requirement to transport materials and use additional land. To tackle the grand challenges, a multidisciplinary team of five universities will work together to develop this groundbreaking technology. Our research targets two specific aspects on renewable low carbon fuel generation: 1) Use of biomass and wastewater as a source of energy and reducing power to synthesise chemicals from CO2. 2) Interface electrochemical and biological processes to achieve chemical energy-to-fuels transformation. To achieve the goal of this project, there are three major research challenges we need to tackle: 1. How to maximise the power output and energy from wastewater with Bioelectrochemical systems? 2. How to achieve CO2 conversion to medium chain alkanes through reduction to formate in Microbial electrolysis cells, and then SimCells? 3. Can we develop a viable, integrated, efficient and economic system combining bio-electrochemical and biological processes for sustainable liquid fuel production? To tackle these challenges, we need to maximise energy output from wastewater by using novel 3-D materials, to apply highly active electrochemical catalysts for CO2 reduction, to improve efficiency of SimCell reactor, and to integrate both processes and design a new system to convert CO2 to medium chain alkanes with high efficiency. In this study, rigorous LCA will be carried out to identify the optimum pathways for liquid biofuel production. We will also look at the policies on low carbon fuel production and explore the ways to influence low carbon fuel policies. Through the development of this innovative technology, we will bring positive impact on the UK's target for reducing CO2 emissions and increasing the use of renewable energy.
more_vert assignment_turned_in Project2014 - 2019Partners:Ghent University, Gent, Belgium, Newcastle University, Newcastle University, Northumbrian Water Group plc, HIT +15 partnersGhent University, Gent, Belgium,Newcastle University,Newcastle University,Northumbrian Water Group plc,HIT,W H Partnership,Tata Steel UK,Magneto Special Anodes B.V.,PSU,W H Partnership,Tata Steel UK,Pennsylvania State University,University of Glasgow,Penn State University College of Medicin,University of Glasgow,Magneto Special Anodes B.V.,Tata Steel (United Kingdom),NWL,Chemviron Carbon (United Kingdom),Chemviron Carbon LtdFunder: UK Research and Innovation Project Code: NE/L01422X/1Funder Contribution: 596,025 GBPProduction and recovery of energy and industrial materials from novel biological sources reduces our dependency on the Earth's finite mineral petrochemical resources and helps the UK economy to become a low carbon economy. Recovering energy and valuable resources such as metals from waste materials is an attractive but challenging prospect. The valuable materials are usually present in wastes at very low levels and present as a highly complex mixture. This makes it very difficult to concentrate and purify them in an economically sustainable manner. In recent years there have been exciting advances in our understanding of ways in which microorganisms can extract the energy locked up in the organic compounds found in wastewater and in the process generate electricity. This is achieved in devices known as microbial fuel cells (MFC). In an MFC microorganisms on the anode oxidize organic compounds and in doing so generate electrons. These electrons are passed into an electrical circuit and transferred to the MFC cathode where they usually react with oxygen to form water, sustaining an electric current in the process. In theory MFC can be configured such that, rather than conversion of oxygen to water at the cathode they could convert metal ions to metals or drive the synthesis of valuable chemicals. It is our aim to develop such systems that use energy harvested from wastewater to recover metals from metal-containing waste streams and for the synthesis of valuable chemicals, ultimately from CO2. This project will bring together experts from academia and industry to devise ways in which this can be achieved and will form the foundation of a research programme where scientists working on fundamental research and those with the skills to translate laboratory science to industrial processes will work together to develop sustainable processes for the production of valuable resources from waste.
more_vert assignment_turned_in Project2013 - 2013Partners:University of Glamorgan, University of Glasgow, Chemviron Carbon Ltd, HIT, Newcastle University +15 partnersUniversity of Glamorgan,University of Glasgow,Chemviron Carbon Ltd,HIT,Newcastle University,Chemviron Carbon (United Kingdom),University of Manchester,NWL,University of Surrey,TATA Motors Engineering Technical Centre,University of Glasgow,University of Salford,Newcastle University,W H Partnership,TATA Motors Engineering Technical Centre,W H Partnership,The University of Manchester,Northumbrian Water Group plc,University of Glamorgan,University of SurreyFunder: UK Research and Innovation Project Code: NE/K015788/1Funder Contribution: 67,434 GBPProduction and recovery of energy and industrial materials from novel biological sources reduces our dependency on the Earth's finitie mineral petrochemical resources and helps the UK economy to become a low carbon economy. Recovering energy and valuable resources such as metals from waste materials is an attractive but challenging prospect. The valuable materials are usually present in wastes at very low levels and present as a highly complex mixture. This makes it very difficult to concentrate and purify them in an economically sustainable manner. In recent years there have been exciting advances in our understanding of ways in which microorganisms can extract the energy locked up in the organic compounds found in wastewater and in the process generate electricity. This is achieved in devices known as microbial fuel cells (MFC). In an MFC microorganisms on the anode oxidize organic compounds and in doing so generte electrons. These electrons are passed into an electrical circuit and transferred to the MFC cathode where they usually react with oxygen to form water, sustaining an electric current in the process. In theory MFC can be configured such that, rather than conversion of oxygen to water at the cathode they could convert metal ions to metals or drive the synthesis of valuable chemicals. It is our aim to develop such systems that use energy harvested from wastewater to recover metals from metal-containing wastestreams and for the synthesis of valuable chemicals, ultimately from CO2. This project will bring together experts from academia and industry to devise ways in which this can be achieved and will form the foundation of a research programme where scientists working on fundamental research and those with the skills to translate laboratory science to industrial processes will work together to develop sustainable processes for the production of valuable resources from waste.
more_vert assignment_turned_in Project2016 - 2020Partners:Dong Hua University, TISCO, Newcastle University, PSU, Newcastle University +19 partnersDong Hua University,TISCO,Newcastle University,PSU,Newcastle University,Indian Institute of Technology (Delhi),NewCell Technologies Ltd,NewCell Technologies Ltd,Tata Group UK,Magneto Special Anodes B.V.,HAYDALE LIMITED,Haydale,W H Partnership,Penn State University College of Medicin,Ghent University, Gent, Belgium,NWL,Northumbrian Water Group plc,Donghua University,Magneto Special Anodes B.V.,Tata Steel (United Kingdom),Haydale Limited,W H Partnership,Pennsylvania State University,IITDFunder: UK Research and Innovation Project Code: EP/N009746/1Funder Contribution: 1,924,300 GBPThe current fuel production and related industries are still heavily reliant on fossil fuels. BP's "Statistical Review of World Energy" published in 2014 states that the world has in reserves 892 billion tonnes of coal, 186 trillion cubic meters of natural gas, and 1688 billion barrels of crude oil. Although these represent huge reserves, taking into account today's level of extraction, would mean that coal would be exhausted in 113 years and natural gas and crude oil would be extracted by 2069 and 2067, respectively. In the meanwhile, the CO2 atmospheric concentration has increased from 270 ppm before the industrial revolution to 400 ppm today and its annual release is predicted to exceed 40GT/year by 2030. As the world population increases, breakthrough technologies tackling both fuel supply and carbon emission challenges are needed. The use of CO2 from, or captured in industrial processes, as a direct feedstock for chemical fuel production, are crucial for reducing green house gas emission and for sustainable fuel production with the existing resources. The aim of this project is to develop a breakthrough technology with integrated low cost bio-electrochemical processes to convert CO2 into liquid fuels for transportations, energy storage, heating and other applications. CO2 is firstly electrochemically reduced to formate with the electric energy from biomass and various wastes and other renewable sources by Bioelectrochemical systems (BES). The product then goes through a biotransformation SimCell reactor with microorganisms (Ralstonia) specialised in converting formate to medium chain alkanes using a Synthetic biology approach. The proposed technology will develop around the existing wastewater treatment facilities from for example, petroleum refineries and water industries, utilising the carbon source in wastewater, thus minimising the requirement to transport materials and use additional land. To tackle the grand challenges, a multidisciplinary team of five universities will work together to develop this groundbreaking technology. Our research targets two specific aspects on renewable low carbon fuel generation: 1) Use of biomass and wastewater as a source of energy and reducing power to synthesise chemicals from CO2. 2) Interface electrochemical and biological processes to achieve chemical energy-to-fuels transformation. To achieve the goal of this project, there are three major research challenges we need to tackle: 1. How to maximise the power output and energy from wastewater with Bioelectrochemical systems? 2. How to achieve CO2 conversion to medium chain alkanes through reduction to formate in Microbial electrolysis cells, and then SimCells? 3. Can we develop a viable, integrated, efficient and economic system combining bio-electrochemical and biological processes for sustainable liquid fuel production? To tackle these challenges, we need to maximise energy output from wastewater by using novel 3-D materials, to apply highly active electrochemical catalysts for CO2 reduction, to improve efficiency of SimCell reactor, and to integrate both processes and design a new system to convert CO2 to medium chain alkanes with high efficiency. In this study, rigorous LCA will be carried out to identify the optimum pathways for liquid biofuel production. We will also look at the policies on low carbon fuel production and explore the ways to influence low carbon fuel policies. Through the development of this innovative technology, we will bring positive impact on the UK's target for reducing CO2 emissions and increasing the use of renewable energy.
more_vert