Powered by OpenAIRE graph
Found an issue? Give us feedback

Auriga Energy Ltd

Auriga Energy Ltd

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/F062443/1
    Funder Contribution: 177,996 GBP

    Mankind has now realised that its dependance on oil cannot last forever. Viable alternative fuels are frantically being sought, particularly for use in the automobile industry. Hydrogen is emerging as a promising candidate, as it can be generated from a variety of sources. As a clean burning substitute, hydrogen has the potential to dramatically cut our carbon dioxide emissions to the levels suggested in the 2007 White paper (60 % reduction by 2050), however to be practical any new fuel needs to be safe and compact. As hydrogen is a gas at ambient temperatures, it would need to be compressed under very high pressures or cooled to very low temperatures to provide sufficient supplies necessary for the running of vehicles. Neither high pressures nor low temperatures are acceptible, not least on safety grounds. In an attempt to circumvent these problems, methods of chemical storage are been investigated. Amongst the front runners currently under investigation are microporous materials, which relie on high surface area and strong hydrogen binding affinity. Large scale syntheses and chemical flexibility are other important considerations, which put coordination networks based on metal ions linked by organic spacer molecules in the shop window. These metal-organic frameworks (MOFs) have recently shown potential for hydrogen uptake with systems based on zinc clusters/carboxylate linkers exhibiting hydrogen absorption values, albeit at low temperatures, approaching the 2010 targets set by the US Department of Energy for on-board hydrogen storage.It is the intention here to evaluate a promising new familiy of MOFs, the structures of which are based on zinc (or aluminium) clusters linked by diphenolate spacers. These systems possess all the attributes necessary for hydrogen absorption, can be prepared on multi-gramme scale and are readily amenable to chemical modification, including the incorporation of alkali-metal ions shown in other systems to be beneficial to hydrogen uptake. The zinc (and aluminium) clusters in our systems also possess intruiging and potentially useful conformations, which create internal pockets that are well suited to small molecule capture.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F06120X/1
    Funder Contribution: 89,653 GBP

    Mankind has now realised that its dependance on oil cannot last forever. Viable alternative fuels are frantically being sought, particularly for use in the automobile industry. Hydrogen is emerging as a promising candidate, as it can be generated from a variety of sources. As a clean burning substitute, hydrogen has the potential to dramatically cut our carbon dioxide emissions to the levels suggested in the 2007 White paper (60 % reduction by 2050), however to be practical any new fuel needs to be safe and compact. As hydrogen is a gas at ambient temperatures, it would need to be compressed under very high pressures or cooled to very low temperatures to provide sufficient supplies necessary for the running of vehicles. Neither high pressures nor low temperatures are acceptible, not least on safety grounds. In an attempt to circumvent these problems, methods of chemical storage are been investigated. Amongst the front runners currently under investigation are microporous materials, which relie on high surface area and strong hydrogen binding affinity. Large scale syntheses and chemical flexibility are other important considerations, which put coordination networks based on metal ions linked by organic spacer molecules in the shop window. These metal-organic frameworks (MOFs) have recently shown potential for hydrogen uptake with systems based on zinc clusters/carboxylate linkers exhibiting hydrogen absorption values, albeit at low temperatures, approaching the 2010 targets set by the US Department of Energy for on-board hydrogen storage.It is the intention here to evaluate a promising new familiy of MOFs, the structures of which are based on zinc (or aluminium) clusters linked by diphenolate spacers. These systems possess all the attributes necessary for hydrogen absorption, can be prepared on multi-gramme scale and are readily amenable to chemical modification, including the incorporation of alkali-metal ions shown in other systems to be beneficial to hydrogen uptake. The zinc (and aluminium) clusters in our systems also possess intruiging and potentially useful conformations, which create internal pockets that are well suited to small molecule capture.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y024605/1
    Funder Contribution: 7,813,340 GBP

    Along the well-to-wake value chain from upstream processes associated with fuels production and supply, components manufacture, and ships construction to the operation of ports and vessels, the UK domestic and international shipping produced 5.9 Mt CO2eq and 13.8 Mt CO2eq, respectively in 2017, totalling 3.4% of the UK's overall greenhouse gas emissions. The sector contributes significantly to air pollution challenges with emissions of nitrogen oxide, sulphur dioxide and particulate matters, harming human health and the environment particularly in coastal areas. The annual global market for maritime emission reduction technologies could reach $15 billion by 2050. This provides substantial economic opportunities for the UK. The Department for Transport's Clean Maritime Plan provides a route map for action on infrastructure, economics, regulation, and innovation that covers high technology readiness level (TRL 3-7). There is a genuine opportunity to explore fundamental research and go beyond conventional marine engineering and naval architecture and exploit the UK's world-leading cross-sectoral fundamental research expertise on hydrodynamics, fuels, combustion, electric machines and power electronics, batteries and fuel cells, energy systems, digitization, management, finance, logistics, safety engineering, etc. The proposed UK-MaRes Hub is a multidisciplinary research consortium and will conduct interdisciplinary research focussed on delivering disruptive solutions which have tangible potential to transform existing practice and reach a zero-carbon future by 2050. The challenges faced by UK maritime activity and their solutions are generally common but when deployed locally, they are bespoke due to the specifics of the port, the vessels they support, and the dependencies on their supply chains. Implementation will be heavily dependent on the local community, existing infrastructure, as well as opportunities and constraints related to the supply, distribution, storage and bunkering of alternative fuels, in decarbonising port handling facilities and cold-ironing, with the integration of renewable energy, reducing air pollution, to land-use and increased capacity and capability, and the local development of skills. The types of vessels and the cargoes handled through UK ports varies and are related to several factors, such as geographical location, regional industrial and business activity and wider transport links. Therefore, UK-MaRes Hub aims to feed into a clean maritime strategy that can adapt to place-based challenges and provide targeted technical and socio-economic interventions through a novel Co-innovation Methodology. This will bring together Research Exploration themes/work packages and Responsive Research Fund project activity into focus on port-centric scenarios and assess possibilities to innovate and reduce greenhouse gas emissions by 2030, 2040 and 2050 timeframes, sharing best practice across the whole maritime ecosystem. A diverse, and inclusive Clean Maritime Network+ will ensure wider dissemination and knowledge take-up to achieve greater impact across UK ports and other maritime activity. The Network+ will have coordinated regional activity in South-West, Southern, London, Yorkshire & Lincolnshire, Midlands, North-West, North-East, Scotland, Wales, and Northern Ireland. An already established Clean Maritime Research Partnership has vibrant academic, industrial, and civic stakeholder members from across the UK. UK-MaRes Hub will establish a Clean Maritime Policy Unit to provide expert advice and quantitative evidence to enable rapid decarbonisation of the maritime sector. It will ensure that the UK-MaRes Hub is engaging with policymakers at all stages of the hub activities.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.