
GEIRI Europe
GEIRI Europe
5 Projects, page 1 of 1
assignment_turned_in Project2024 - 2025Partners:FeTu Ltd, Star Refrigeration Ltd, Sunamp (United Kingdom), John Gilbert Architects, GEIRI Europe +2 partnersFeTu Ltd,Star Refrigeration Ltd,Sunamp (United Kingdom),John Gilbert Architects,GEIRI Europe,University of Liverpool,Scottish Federation of Housing AssociationsFunder: UK Research and Innovation Project Code: EP/V042033/2Funder Contribution: 352,122 GBPThe UK has set a target to reach net zero emissions by 2050. Heat accounts for nearly half of the UK's energy consumption. Among several possible solutions, heat pumps are considered as one of the most promising technologies for decarbonising the domestic heating sector. Among all heat pumps, air source heat pumps (ASHP) are the most cost-effective option for householders. the Committee on Climate Change (CCC) recommends mass deployment of heat pumps to comply with the net zero target, and their net zero 'Further Ambition' scenario includes the deployment of 19 million heat pumps in homes by 2050. However, the uptake of heat pumps in the UK is very low at present. In 2018, heat pump sales in the UK were around 27,000 units (most are ASHPs), significantly lower than other EU countries. This represents a grand challenge for the government, industry, business, and research communities. There are a number of technological and non-technological barriers hindering the wide uptake of heat pumps, particularly air source heat pumps in the UK. There is a mismatch between the current ASHP products and the existing infrastructure and property configuration. Over 80% of houses in the UK use gas boilers for space heating, so their heat emitters (i.e., radiators) are designed for high temperature heat supply using gas boilers. However, most ASHPs available in the market have a relatively low heat production temperature. Secondly, ASHPs are vulnerable to ambient conditions. Their heating capacity and coefficient of performance drop dramatically as the ambient air temperature falls. Furthermore, frost starts to build up at the surface of the outdoor unit when the air temperature drops to around 6 C, so the outdoor units have to be regularly defrosted. Non-technical barriers have also played an important role behind the low uptake of heat pumps. The current UK heat pump market suffers from high capital cost and a low awareness of the product. This project, based on the PI's pending patent (Application number: 2015531.3), aims to develop a novel flexible, multi-mode air source heat pump (ASHP). This offers energy-free defrosting and is capable of continuous heating during frosting, thus eliminating the backup heater that is required by current ASHPs. We will address the key technical and non-technical challenges through interdisciplinary innovations. Our project is also supported by leading industrial companies with substantial contributions (e.g. the compressor). The developed technology offers energy-free defrosting and can be operated at different modes to benefit from off-peak electricity and/or warm air during the daytime. It will be much more energy-efficient than the current products, and thus could facilitate rapid uptake of air source heat pumps, making an important contribution to the decarbonisation of the domestic heating sector in the UK.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::04b841bba30d50d9b0916ff15148d1f9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::04b841bba30d50d9b0916ff15148d1f9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2025Partners:SFU, Simon Fraser University, University of Birmingham, Ferrite Microwave Technologies LLC, Ferrite Microwave Technologies LLC +5 partnersSFU,Simon Fraser University,University of Birmingham,Ferrite Microwave Technologies LLC,Ferrite Microwave Technologies LLC,GEIRI Europe,GEIRI Europe,University of Birmingham,AMP Clean Energy,AMP Clean EnergyFunder: UK Research and Innovation Project Code: EP/V041665/1Funder Contribution: 1,504,770 GBPThe Committee on Climate Change suggests that we need to decarbonise all heat in buildings by 2050 to achieve the Net Zero emissions targets. The electrification of heat supply, through either direct electric heating or heat pumps, seems more likely to be realised in practice. However, the complete electrification of heat will result in much higher electricity demand in winter than in summer. Furthermore, due to the consistency of ambient temperature, it will also lead to electricity demand spikiness which is a big challenge for the grid. The HARVEST project will develop a new solution that can absorb and accumulate the curtailed/waste renewable electricity all around the year using thermochemical heat storage technology and then convert and magnify the heat output in winter and cooling output in summer using heat pump technology. The unique features of the proposed solution are: (1) the microwave-assisted process to flexibly absorb renewable electricity; and (2) the compact and efficient regeneration process by direct contact reaction between thermochemical heat storage materials and ammonia solution. We have established a strong multidisciplinary consortium, consisting of leading researchers from the University of Birmingham, the University of Edinburgh, and the University College London, to address the key challenges in both the scientific/technological aspects and social aspects. Our research will significantly contribute to several identified approaches in the 'Decarbonising Heating and Cooling 2' call document, in particular, the 'new technologies of heating and/or cooling' and 'new methods or significant developments for heat storage or cold storage'. Our research is also further supported by the UK and international partners to maximise knowledge exchange and impact delivery.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3aca776fce19a185b48e2d26cce2558a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3aca776fce19a185b48e2d26cce2558a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2023Partners:Star Refrigeration Ltd, FeTu Ltd, Scottish Federation of Housing Assoc, John Gilbert Architects, University of Glasgow +10 partnersStar Refrigeration Ltd,FeTu Ltd,Scottish Federation of Housing Assoc,John Gilbert Architects,University of Glasgow,Sunamp (United Kingdom),GEIRI Europe,University of Glasgow,SUNAMP LIMITED,GEIRI Europe,SUNAMP LIMITED,FeTu Ltd,John Gilbert Architects,Star Refrigeration Ltd,Scottish Federation of Housing AssociationsFunder: UK Research and Innovation Project Code: EP/V042033/1Funder Contribution: 1,149,350 GBPThe UK has set a target to reach net zero emissions by 2050. Heat accounts for nearly half of the UK's energy consumption. Among several possible solutions, heat pumps are considered as one of the most promising technologies for decarbonising the domestic heating sector. Among all heat pumps, air source heat pumps (ASHP) are the most cost-effective option for householders. the Committee on Climate Change (CCC) recommends mass deployment of heat pumps to comply with the net zero target, and their net zero 'Further Ambition' scenario includes the deployment of 19 million heat pumps in homes by 2050. However, the uptake of heat pumps in the UK is very low at present. In 2018, heat pump sales in the UK were around 27,000 units (most are ASHPs), significantly lower than other EU countries. This represents a grand challenge for the government, industry, business, and research communities. There are a number of technological and non-technological barriers hindering the wide uptake of heat pumps, particularly air source heat pumps in the UK. There is a mismatch between the current ASHP products and the existing infrastructure and property configuration. Over 80% of houses in the UK use gas boilers for space heating, so their heat emitters (i.e., radiators) are designed for high temperature heat supply using gas boilers. However, most ASHPs available in the market have a relatively low heat production temperature. Secondly, ASHPs are vulnerable to ambient conditions. Their heating capacity and coefficient of performance drop dramatically as the ambient air temperature falls. Furthermore, frost starts to build up at the surface of the outdoor unit when the air temperature drops to around 6 C, so the outdoor units have to be regularly defrosted. Non-technical barriers have also played an important role behind the low uptake of heat pumps. The current UK heat pump market suffers from high capital cost and a low awareness of the product. This project, based on the PI's pending patent (Application number: 2015531.3), aims to develop a novel flexible, multi-mode air source heat pump (ASHP). This offers energy-free defrosting and is capable of continuous heating during frosting, thus eliminating the backup heater that is required by current ASHPs. We will address the key technical and non-technical challenges through interdisciplinary innovations. Our project is also supported by leading industrial companies with substantial contributions (e.g. the compressor). The developed technology offers energy-free defrosting and can be operated at different modes to benefit from off-peak electricity and/or warm air during the daytime. It will be much more energy-efficient than the current products, and thus could facilitate rapid uptake of air source heat pumps, making an important contribution to the decarbonisation of the domestic heating sector in the UK.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::58623d2661abece83946717d5e89ac7e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::58623d2661abece83946717d5e89ac7e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2020 - 2023Partners:UK Power Networks, Manitoba Hydro, Elin VERD. S.A, Beijing GZ Control Technology, TGOOD Global Ltd +11 partnersUK Power Networks,Manitoba Hydro,Elin VERD. S.A,Beijing GZ Control Technology,TGOOD Global Ltd,FTI Consulting,GEIRI Europe,Manitoba Hydro International Ltd,GEIRI Europe,TGOOD Global Ltd,Beijing GZ Control Technology,Imperial College London,UK Power Networks,Elin VERD. S.A,FTI Consulting,UK Power NetworksFunder: UK Research and Innovation Project Code: EP/T021713/1Funder Contribution: 775,785 GBPUpgrade of UK energy system is at the core of Smart systems and flexibility plan laid out in the Government's Industrial Strategy. Beijing, Shanghai, Guangzhou and Shenzhen are aiming to build up world-class distribution networks as they are among the target areas for export promotion. The massive uptake of renewable generations in both the UK and China offers a huge challenge requiring expensive balancing mechanism. It is only through fundamental research focused on addressing these challenges that truly transformative changes to our energy future beyond 2050 can happen. The purpose of this proposal is to carryout underpinning research with an objective to develop tools that will make our electricity supply system resilient as well as sustainable. It will be both data and model driven activities of a strong consortium of technical experts from both sides. The data driving machine learning tool will deliver operational health index of various components in the system. It will employ dynamic state estimation to develop new network automation procedure to ascertain adequate margin of stability of operation of the network from adverse interactions between the non-synchronous generation and synchronous generation of the system. It will explore novel control and protection technology to safe guard the integrity of the operation of the system with randomly fluctuating output from renewables. The technical competence of the team covers range of expertise in power plant and network modelling, big data, machine learning, system dynamics, estimation, control, and power electronics in the context of interconnected power network operation and protection. Tasks proposed in the program of work will explore several methods of data pre-processing, feature extraction and dimensionality reduction. Faster and accurate identification of the fault location in the cable through impedance transfer function enabled eigen-value approach is revolutionary and so is the ML approach to sensor data optimization in fault location. This is a consortium involving academic and industrial partners from a range of disciplines and different research environments and cultures. The PIs propose a jointly led project management team comprising of all the investigators. All the work packages involve researchers from both sides requiring regular exchange of researchers to carry on with the technical tasks. The RAs and investigators will spend two weeks in every visit to China with partner's organizations. Each work package has joint WP leaders who will coordinate within his/her group of researcher and reports to the PI. Both the PIs have led multinational consortia of even larger sizes and between them. A project advisory board (PAB) will be set up inviting the members from industry partners and technical experts from GEIRI, UKPN, Elin VERD, MHI, FTI Consulting. The PAB will help facilitate explore opportunity for engaging with industry and other user of the research outcome. The PIs from both sides will network with other approved projects through a high-level board comprising of all PIs and representatives from RCUK and NSFC. There will be further networking through sponsoring session and technical paper in big conferences such as Power Tech, ISGT, CIGRE, CIRED, Power and Energy Society general meeting (PESGM), and participating in low carbon network innovation (LCNI). The availability of meaningful data is at times challenging. Our strategy to manage such challenge will be to work on simulation data from model available in public domain, promised by industry supporter and introduce noise, contamination and missed data based on trend and practice in big data analytic domain in the context of power engineering drawing upon the experience and insight of the industry partners.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3a5a7aa486043265a99d69dfb99efb6f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3a5a7aa486043265a99d69dfb99efb6f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2025Partners:University of Birmingham, Scottish and Southern Energy (United Kingdom), University of Birmingham, Int Soc for Energy Transit Stud (ISETS), European Metal Recycling (EMR) +15 partnersUniversity of Birmingham,Scottish and Southern Energy (United Kingdom),University of Birmingham,Int Soc for Energy Transit Stud (ISETS),European Metal Recycling (EMR),Bunting Magnetics Europe (UK),GEIRI Europe,C-Tech Innovation (United Kingdom),Magnet Applications Ltd,GEIRI Europe,European Metal Recycling (EMR),DLR,C-Tech Innovation (United Kingdom),Int Soc for Energy Transit Stud (ISETS),C-Tech Innovation (United Kingdom),Scottish and Southern Energy SSE plc,Scottish and Southern Energy SSE plc,Scottish and Southern Energy SSE plc,German Aerospace Center,German Aerospace Center (DLR)Funder: UK Research and Innovation Project Code: EP/W027887/1Funder Contribution: 1,078,160 GBPRenewable energy generation as well as the electrification of both transportation (via electric vehicles) and space heating (via heat pumps) are regarded as the key enablers to achieve a net-zero circular economy by 2050. The Prime Minister's Ten Point Plan (November 2020) has set an ambition to grow the installation of electric heat pumps from 30,000 per year to 600,000 per year by 2028. However, the radical and complete replacement of fossil fuels (mainly natural gas for the UK) with renewable for heating will lead to significant 'capability wastes': (1) up to 150GW renewable electricity generation capacity will be mostly idle in other seasons rather than winter if superabundant renewable generation capacity was installation without inter-seasonal storage; (2) about 44GW conventional heat-to-power electricity generation capacity as well as the related infrastructure would be 'wasted' due to lack of carbon-free fuels. The 'waste' heat-to-power generation capacity is sufficient to meet the UK's electricity generation for heating in winters, considering their much higher load factor than renewable generation. One promising approach to tackle these challenges is the so-called 'Carnot Battery' technology, which is a grid-scale system primarily used to store electric energy with three key processes: transforming electricity into heat, storing the heat in inexpensive storage media, and then transforming the heat back to electricity when required. The 'Carnot Battery' is regarded as an emerging technology for the inexpensive and site-independent storage of electrical energy by turning the conventional power plants into grid-scale energy storage plants. However, current R&D efforts using this technology adopt either sensible thermal storage or latent heat storage and therefore are only suitable for short duration applications (e.g., daily/weekly energy management) due to unavoidable self-discharge (heat loss/dissipation). The overall aim of this project is to develop a novel and cost-effective metal oxides redox based thermochemical heat storage technology through the recovery of metallic material wastes, which enables the flexible capture of waste renewable electricity, as well as the timely power generation using otherwise retired thermal power plants. The whole process can realise the concept of 'Carnot Batteries' which could provide both short-term balancing and long-term inter-seasonal services to the grid.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::116911238e476db529aff9f06260329a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::116911238e476db529aff9f06260329a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu