
BOC Ltd
BOC Ltd
8 Projects, page 1 of 2
assignment_turned_in Project2009 - 2014Partners:ZJOU, ZJOU, BOC Ltd, Ansys (United Kingdom), University of Leeds +9 partnersZJOU,ZJOU,BOC Ltd,Ansys (United Kingdom),University of Leeds,Fluent Europe Ltd,Fluent Europe Ltd,Mitsui Babcock Energy Ltd,Mitsui Babcock Energy Ltd,Zhejiang University,University of Leeds,Linde (United Kingdom),Doosan (United Kingdom),BOC LtdFunder: UK Research and Innovation Project Code: EP/G062153/1Funder Contribution: 1,737,740 GBPIf the carbon dioxide produced when coal is burnt to make electricity can be collected in a concentrated form then it can be compressed into a dense liquid and squeezed into the pores between rock grains a kilometre or more underground. By putting the carbon dioxide (CO2 ) in places where the porous rocks are sealed by layer of non-porous rocks we can be very confident that most of it will stay there for tens of thousands of years, so it won't increase the risk of dangerous climate change. But current coal power stations don't release the CO2 in a concentrated form; it is mixed with about five times its volume of nitrogen and oxygen, from the air used to burn the coal. One way to avoid this is to burn the coal in pure oxygen instead of air. We know this can theoretically be made to work, but if pure oxygen - or really a 'synthetic air' made up of oxygen and recycled combustion products instead of nitrogen - is used to burn coal then many things would be different from using air. This project will develop the scientific understanding that power plant builders and operators need to predict and cope with these differences.To help develop a better scientific understanding of oxyfuel combustion we will undertake experiments in a 150 kW laboratory burner. This is small (1% of the size!) compared to real power plant burners, but it will use the same oxygen/flue gas mixture. Computer models will be developed to analyse how the coal burns in the laboratory scale burner. These models can then be applied to full scale burners. Using the power available from modern computer systems it is now possible to track the behaviour of all of the swirling gases and particles in a flame ands see how they move and react over very small intervals of time. It's possible - but we are still learning how to do it properly. To help us do this we are taking high speed (1000 frames per second) video recordings of our laboratory oxyfuel flames to see how they really flow and flicker and using the bright and precise beams from laser to help track how particles move and to tell us what sort of gas mixtures are present.We are also reproducing just some of the things that happen in flame in special test equipment so that we have simpler things to measure. These measurements then go into the computer models. How coal particles first catch alight and then how they char and burn are particularly important. We are also interested how the ash in the coal will behave. It can cause problems coating the walls of air-fired power plants, but after a lot of experience we know how to avoid that. Some of those lessons are probably going to have to be re-learned for oxyfuel combustion and the experts who help to sort out air combustion are now starting to do that on our project. We are also looking at how oxyfuel combustion products might attack the steels used in boilers; new materials might be needed, especially in hot or dusty locations.Finally, we need to have trained scientists and engineers to help design and build these new types of power plants. Our project will help to train a number of these, and also build up the experience in the academic community that can be used to advise industry when they come to build and operate new oxyfuel plants. We will also have developed some of the new measurement techniques that can be used to help tune the first plants to give the best possible performance.But no project can do it all. So we are working closely with other groups in the UK and overseas - the IEA Greenhouse Gas Programme coordinates an excellent network that we belong too. And as we learn more we also expect to come up with more questions that need to be answered plus some good ideas for ways to do that.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1358c49c92588388ef8d4a91a6d0ea51&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1358c49c92588388ef8d4a91a6d0ea51&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2025Partners:University of Leeds, NCMT Ltd, Spirit AeroSystems (United Kingdom), Seco Tools, Fusion Coolant Systems Inc +10 partnersUniversity of Leeds,NCMT Ltd,Spirit AeroSystems (United Kingdom),Seco Tools,Fusion Coolant Systems Inc,Seco Tools,Spirit Aerosystems,BOC Ltd,Fusion Coolant Systems Inc,BOC Ltd,REGO-FIX,REGO-FIX,NCMT Ltd,University of Leeds,Linde (United Kingdom)Funder: UK Research and Innovation Project Code: EP/W001950/1Funder Contribution: 758,327 GBPCurrently the dominant approach for cooling and lubricating machining processes, such as drilling, milling and turning, is to use emulsion-based coolants (otherwise known as metalworking fluids) at high flow rates. There are many serious environmental, financial and health and safety reasons for reducing industry's reliance on emulsion coolants - an estimated 320,000 tonnes/year in the EU alone, up to 17% of total production costs, and over 1 million people are exposed regularly to the injurious effects of its additives which can cause skin irritation and even cancers. Serious environmental problems are also caused by the up to 30% of coolant that is lost in leaks and cleaning processes and which eventually ends up polluting rivers. These issues have motivated extensive research efforts to identify more sustainable machining processes. There is growing and compelling evidence from preliminary studies that cryogenic machining with supercritical CO2 (scCO2) with small amounts of lubricant (Minimum Quantity Lubrication, MQL, referred to as scCO2+MQL machining) can provide a high-performing and more sustainable alternative. Current knowledge gaps in the relationships between key input and output variables, the reasons for variations in performance and concerns over the release of CO2, are preventing a major uptake of this technology by UK manufacturers. This project aims to test the hypothesis that optimising combinations of CO2 with small amounts of the appropriate lubricant can provide reliable, step-change improvements in the performance and sustainability of machining operations. It will carry out a systematic investigation into the effect of scCO2+MQL on cutting forces, heat and tool wear mechanisms during machining of titanium, steels and composite stacks. It will develop: (a) advanced experimental methods in combination with full-scale machining trials to explore how lubrication and heat transfer affect machining performance; (b) lifecycle assessment and scavenging methods for sustainable re-use of CO2; (c) machine learning methods to predict the relationships between process inputs and outputs and (d) develop an effective and efficient optimisation methodology for balancing competing financial, performance and sustainability objectives in scCO2+MQL machining. These will deliver the knowledge, experimental and modelling methods and software tools that UK industry needs to exploit this enormous as-yet untapped potential. The project will involves staff and postdoctoral research assistants from the Universities of Leeds and Sheffield and the Advanced Manufacturing Research Centres in Sheffield, with advice and guidance from a Project Steering Group comprised of leading international academic and industrial experts. Collectively, the team has the expertise in (a) manufacturing systems and tribology; (b) energy systems and lifecycle assessment; (c) fluid mechanics and heat transfer, and (d) machine learning and optimisation, needed to provide the 'how' and 'why' UK industry needs to reliably achieve or exceed the performance improvements seen in preliminary studies, namely doubling of tool life. We will work with our industrial and business sector collaborators to drive transformations in machining rate, process cost and accompanying safety, environmental and quality metrics for the benefit of the UK's defence, civil nuclear and medical manufacturing industries through the 2020s and beyond.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c1fc5ec89e0ffadc444848f32e1aee85&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c1fc5ec89e0ffadc444848f32e1aee85&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2010 - 2014Partners:SCUT, University of Leeds, RWE (United Kingdom), ZJOU, SCUT +18 partnersSCUT,University of Leeds,RWE (United Kingdom),ZJOU,SCUT,Mitsui Babcock Energy Ltd,Fluent Europe Ltd,BOC Ltd,BOC Ltd,Ansys (United Kingdom),South China University of Technology,University of Leeds,Doosan (United Kingdom),Zhejiang University,Linde (United Kingdom),RWE npower,Electric Power Research Institute,RWE npower,Electric Power Research Institute,Electric Power Research Institute,ZJOU,Mitsui Babcock Energy Ltd,Fluent Europe LtdFunder: UK Research and Innovation Project Code: EP/G063451/1Funder Contribution: 490,609 GBPCoal will likely remain in an important position in the world energy mix in the foreseeable future because of its stability in supply and low cost in production. However, coal fired power generation industry has to substantially reduce its pollutant emission to survive in the future carbon constrained energy market. Oxycoal combustion with CO2 capture from flue gas is an emerging technology that can be adapted to both new and existing coal-fired power stations leading to a substantial reduction in carbon emission. Various assessments suggest that oxycoal technology is feasible and more favourable than other CCS (Carbon Capture and Storage) technologies, such as post-carbon capture. Currently, oxycoal combustion technology is still in its laboratory and technology demonstration stages and there is a significant knowledge gap in this new technology. A number of uncertainties exist in the combustion process where the changes in the heat transfer and combustion characteristics are, among others, the major concerns. Issues with system designs such as the optimum oxygen concentrations and its impact need to be investigated. Other complications include such as high concentrations of sulphur and mercury and changes in deposition and corrosion in the boiler and the downstream elements. If the technology is to be widely adopted in power generation industry for CCS then it is imperative that the impacts of these changes in the combustion processes are well understood, and that economic solutions to mitigating the problems encountered are identified.The proposed research aims to achieve an in-depth understanding of the oxycoal combustion processes, to develop key modelling capabilities for process prediction, and to provide guidelines to the power generation industry on design new and/or retrofitting existing power plant with oxycoal combustion technology. Because of the high costs of performing large scale tests, process modelling is commonly used as an alternative in technology development. In this project, advanced Computational Fluid Dynamics (CFD) techniques will be employed to perform detailed simulations on the oxycoal combustion processes. Because the oxycoal combustion is very different from the conventional air-coal combustion, new oxycoal specific CFD sub-programmes will be developed in order to achieve accurate modelling results. In parallel to the CFD modelling, well controlled practical measurements will be carried out to setup a comprehensive database on the oxycoal combustion and to provide validation to the CFD model development. In addition, a unique 3D flame monitoring system will be developed to monitor the oxycoal combustion flames. This integrated approach of advanced computational modelling, detailed experimental testing, and 3D flame imaging forms a mutual validating and complementary system to ensure a credible research output so that an in-depth understanding of the impact of oxycoal on flame characteristics, critical reaction kinetics, and devolatilsation and char reaction in the combustion processes may be achieved.The project consortium comprises of three academic centres of expertise from Leeds, Kent and the Imperial College. Three leading energy research institutes in China are joint force on the research. Collaborative research programmes have been arranged to carryout experimental testing and theoretical simulation in both UK and China. The project has also gained strong supported from leading power generation companies and commercial CFD developer providing practical advice on oxycoal combustion tests and combustion model development. The project provides a platform for the leading UK groups and leading Chinese partners to work together in tackling the significant issues related to the oxycoal combustion technology, which is expected to contribute significantly in cutting the CO2 and other greenhouse gases emissions in the power industry in both countries.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::32b68379d8b59890a845e19aed818df5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::32b68379d8b59890a845e19aed818df5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2013Partners:Fluent Europe Ltd, ZJOU, SCUT, RWE (United Kingdom), BOC Ltd +18 partnersFluent Europe Ltd,ZJOU,SCUT,RWE (United Kingdom),BOC Ltd,Doosan (United Kingdom),Ansys (United Kingdom),BOC Ltd,Imperial College London,Linde (United Kingdom),Electric Power Research Institute,Mitsui Babcock Energy Ltd,Fluent Europe Ltd,Electric Power Research Institute,Mitsui Babcock Energy Ltd,RWE npower,Zhejiang University,Imperial College London,SCUT,RWE npower,ZJOU,Electric Power Research Institute,South China University of TechnologyFunder: UK Research and Innovation Project Code: EP/G06315X/1Funder Contribution: 209,093 GBPCoal will likely remain in an important position in the world energy mix in the foreseeable future because of its stability in supply and low cost in production. However, coal fired power generation industry has to substantially reduce its pollutant emission to survive in the future carbon constrained energy market. Oxycoal combustion with CO2 capture from flue gas is an emerging technology that can be adapted to both new and existing coal-fired power stations leading to a substantial reduction in carbon emission. Various assessments suggest that oxycoal technology is feasible and more favourable than other CCS (Carbon Capture and Storage) technologies, such as post-carbon capture. Currently, oxycoal combustion technology is still in its laboratory and technology demonstration stages and there is a significant knowledge gap in this new technology. A number of uncertainties exist in the combustion process where the changes in the heat transfer and combustion characteristics are, among others, the major concerns. Issues with system designs such as the optimum oxygen concentrations and its impact need to be investigated. Other complications include such as high concentrations of sulphur and mercury and changes in deposition and corrosion in the boiler and the downstream elements. If the technology is to be widely adopted in power generation industry for CCS then it is imperative that the impacts of these changes in the combustion processes are well understood, and that economic solutions to mitigating the problems encountered are identified.The proposed research aims to achieve an in-depth understanding of the oxycoal combustion processes, to develop key modelling capabilities for process prediction, and to provide guidelines to the power generation industry on design new and/or retrofitting existing power plant with oxycoal combustion technology. Because of the high costs of performing large scale tests, process modelling is commonly used as an alternative in technology development. In this project, advanced Computational Fluid Dynamics (CFD) techniques will be employed to perform detailed simulations on the oxycoal combustion processes. Because the oxycoal combustion is very different from the conventional air-coal combustion, new oxycoal specific CFD sub-programmes will be developed in order to achieve accurate modelling results. In parallel to the CFD modelling, well controlled practical measurements will be carried out to setup a comprehensive database on the oxycoal combustion and to provide validation to the CFD model development. In addition, a unique 3D flame monitoring system will be developed to monitor the oxycoal combustion flames. This integrated approach of advanced computational modelling, detailed experimental testing, and 3D flame imaging forms a mutual validating and complementary system to ensure a credible research output so that an in-depth understanding of the impact of oxycoal on flame characteristics, critical reaction kinetics, and devolatilsation and char reaction in the combustion processes may be achieved.The project consortium comprises of three academic centres of expertise from Leeds, Kent and the Imperial College. Three leading energy research institutes in China are joint force on the research. Collaborative research programmes have been arranged to carryout experimental testing and theoretical simulation in both UK and China. The project has also gained strong supported from leading power generation companies and commercial CFD developer providing practical advice on oxycoal combustion tests and combustion model development. The project provides a platform for the leading UK groups and leading Chinese partners to work together in tackling the significant issues related to the oxycoal combustion technology, which is expected to contribute significantly in cutting the CO2 and other greenhouse gases emissions in the power industry in both countries.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9886ffa11f12ba8a722530cfa7fddfcd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9886ffa11f12ba8a722530cfa7fddfcd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2014Partners:RWE (United Kingdom), ZJOU, SCUT, Fluent Europe Ltd, BOC Ltd +18 partnersRWE (United Kingdom),ZJOU,SCUT,Fluent Europe Ltd,BOC Ltd,South China University of Technology,Mitsui Babcock Energy Ltd,Zhejiang University,Doosan (United Kingdom),Fluent Europe Ltd,RWE npower,Electric Power Research Institute,BOC Ltd,Mitsui Babcock Energy Ltd,Ansys (United Kingdom),RWE npower,University of Kent,University of Kent,Linde (United Kingdom),Electric Power Research Institute,ZJOU,Electric Power Research Institute,SCUTFunder: UK Research and Innovation Project Code: EP/G063214/1Funder Contribution: 305,084 GBPCoal will likely remain in an important position in the world energy mix in the foreseeable future because of its stability in supply and low cost in production. However, coal fired power generation industry has to substantially reduce its pollutant emission to survive in the future carbon constrained energy market. Oxycoal combustion with CO2 capture from flue gas is an emerging technology that can be adapted to both new and existing coal-fired power stations leading to a substantial reduction in carbon emission. Various assessments suggest that oxycoal technology is feasible and more favourable than other CCS (Carbon Capture and Storage) technologies, such as post-carbon capture. Currently, oxycoal combustion technology is still in its laboratory and technology demonstration stages and there is a significant knowledge gap in this new technology. A number of uncertainties exist in the combustion process where the changes in the heat transfer and combustion characteristics are, among others, the major concerns. Issues with system designs such as the optimum oxygen concentrations and its impact need to be investigated. Other complications include such as high concentrations of sulphur and mercury and changes in deposition and corrosion in the boiler and the downstream elements. If the technology is to be widely adopted in power generation industry for CCS then it is imperative that the impacts of these changes in the combustion processes are well understood, and that economic solutions to mitigating the problems encountered are identified.The proposed research aims to achieve an in-depth understanding of the oxycoal combustion processes, to develop key modelling capabilities for process prediction, and to provide guidelines to the power generation industry on design new and/or retrofitting existing power plant with oxycoal combustion technology. Because of the high costs of performing large scale tests, process modelling is commonly used as an alternative in technology development. In this project, advanced Computational Fluid Dynamics (CFD) techniques will be employed to perform detailed simulations on the oxycoal combustion processes. Because the oxycoal combustion is very different from the conventional air-coal combustion, new oxycoal specific CFD sub-programmes will be developed in order to achieve accurate modelling results. In parallel to the CFD modelling, well controlled practical measurements will be carried out to setup a comprehensive database on the oxycoal combustion and to provide validation to the CFD model development. In addition, a unique 3D flame monitoring system will be developed to monitor the oxycoal combustion flames. This integrated approach of advanced computational modelling, detailed experimental testing, and 3D flame imaging forms a mutual validating and complementary system to ensure a credible research output so that an in-depth understanding of the impact of oxycoal on flame characteristics, critical reaction kinetics, and devolatilsation and char reaction in the combustion processes may be achieved.The project consortium comprises of three academic centres of expertise from Leeds, Kent and the Imperial College. Three leading energy research institutes in China are joint force on the research. Collaborative research programmes have been arranged to carryout experimental testing and theoretical simulation in both UK and China. The project has also gained strong supported from leading power generation companies and commercial CFD developer providing practical advice on oxycoal combustion tests and combustion model development. The project provides a platform for the leading UK groups and leading Chinese partners to work together in tackling the significant issues related to the oxycoal combustion technology, which is expected to contribute significantly in cutting the CO2 and other greenhouse gases emissions in the power industry in both countries.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e595c765835e85b3a1ee2c0b933f6a4c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e595c765835e85b3a1ee2c0b933f6a4c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu