Powered by OpenAIRE graph
Found an issue? Give us feedback

MEDTRONIC

MEDTRONIC IBERICA SA
Country: Spain
20 Projects, page 1 of 4
  • Funder: European Commission Project Code: 101070477
    Overall Budget: 2,412,940 EURFunder Contribution: 2,412,940 EUR

    Europe currently has a leading position in key digital technologies. However, functional electronics is one of several emerging digital transformation areas with no established players, but with the potential to significantly disrupt strategic sectors. Harnessing the full potential of functional electronics will enable Europe to exploit cutting-edge climate-neutral digital solutions to strengthen its leadership, and to seize on emerging opportunities by addressing existing technological gaps in multiple sectors. Functional Electronics has found application in a wide range of sectors and domains including in hybrid Integrated circuits (ICs) or flexible systems. Its global market was worth €15.4billion in 2017 and is expected to reach €37.7billion by 2023, a CAGR of 11%. Despite this growth, functional electronics can generate additional value via the adoption and implementation of new and efficient eco-design approaches at product, process, and business model levels. SusFE will advance the development of functional electronics for green and circular economy by developing a sustainable design and production platform for roll-to-roll manufacturing of the next generation of wearable and diagnostic devices that combine a SusFE toolbox of sustainable components comprising novel flexible integrated circuit (FlexIC) on polymer substrate with ultra-low power printed sensors/biosensors, and wireless communication driven by an organic and recyclable bioenzymatic fuel cell. This will lead to highly integrated and autonomously operating systems that are lightweight, environmentally sustainable, and low-cost. SusFE uses of a combination of sustainable materials and processes to deliver climate-neutral digital solutions including wound monitoring, self-blood sampling/testing and point-of-care devices.

    more_vert
  • Funder: European Commission Project Code: 952179
    Overall Budget: 9,995,730 EURFunder Contribution: 9,995,730 EUR

    The increasing amount and availability of collected data (cancer imaging) and the development of novel technological tools based on Artificial Intelligence (AI) and Machine Learning (ML), provide unprecedented opportunities for better cancer detection and classification, image optimization, radiation reduction, and clinical workflow enhancement. The INCISIVE project aims to address three major open challenges in order to explore the full potential of AI solutions in cancer imaging: (1) AI challenges unique to medical imaging, (2) Image labelling and annotation and (3) Data availability and sharing. In order to do that INCISIVE plans to develop and validate: (1) an AI-based toolbox that enhances the accuracy, specificity, sensitivity, interpretability and cost-effectiveness of existing cancer imaging methods, (2) an automated-ML based annotation mechanism to rapidly produce training data for machine learning research and (3) a pan-European repository federated repository of medical images, that will enable the secure donation and sharing of data in compliance with ethical, legal and privacy demands, increasing accessibility to datasets and enabling experimentation of AI-based solutions. The INCISIVE models and analytics will utilize various cancer imaging scans, biological data and EHRs, and will be trained with 1 PB of available data provided by 8 partners within the project. INCISIVE solution will be investigated in four validation studies for Breast, Prostate, Colorectal and Lung Cancer, taking place in 8 pilot sites, from 5 countries (Cyprus, Greece, Italy, Serbia and Spain), with participation of at least 2,600 patients and a total duration of 1.5 year. INCISIVE moves beyond the state of the art, by improving sensitivity and specificity of lower cost scanning methods, accurately predicting the tumor spread, evolution and relapse, enhancing interpretability of results and “democratizing” imaging data.

    more_vert
  • Funder: European Commission Project Code: 732679
    Overall Budget: 25,202,300 EURFunder Contribution: 19,922,500 EUR

    ACTIVAGE is a European Multi Centric Large Scale Pilot on Smart Living Environments. The main objective is to build the first European IoT ecosystem across 9 Deployment Sites (DS) in seven European countries, reusing and scaling up underlying open and proprietary IoT platforms, technologies and standards, and integrating new interfaces needed to provide interoperability across these heterogeneous platforms, that will enable the deployment and operation at large scale of Active & Healthy Ageing IoT based solutions and services, supporting and extending the independent living of older adults in their living environments, and responding to real needs of caregivers, service providers and public authorities. The project will deliver the ACTIVAGE IoT Ecosystem Suite (AIOTES), a set of Techniques, Tools and Methodologies for interoperability at different layers between heterogeneous IoT Platforms and an Open Framework for providing Semantic Interoperability of IoT Platforms for AHA, addressing trustworthiness, privacy, data protection and security. User-demand driven interoperable IoT-enabled Active & Healthy Ageing solutions will be deployed on top of the AIOTES in every DS, enhancing and scaling up existing services, for the promotion of independent living, the mitigation of frailty, and preservation of quality of life and autonomy. ACTIVAGE will assess the socio-economic impact, the benefits of IoT-based smart living environments in the quality of life and autonomy, and in the sustainability of the health and social care systems, demonstrating the seamless capacity of integration and interoperability of the IoT ecosystem, and validating new business, financial and organizational models for care delivery, ensuring the sustainability after the project end, and disseminating these results to a worldwide audience. The consortium comprises industries, research centres, SMEs, service providers, public authorities encompassing the whole value chain in every Deployment Site.

    more_vert
  • Funder: European Commission Project Code: 101130495
    Funder Contribution: 7,897,420 EUR

    EU-TRAINS aims to reinforce the supply chain on sensors for biomechanics and cardiovascular system real-time monitoring targeting applications in the fields of fitness and healthcare. It leverages from the strength of EU digital microsystem and design to support a 100% made-in-Europe supply chain of solutions which encompass smart-textile integration as well as advanced AI-based edge-cloud data processing. In details the following outcomes are foreseen: - Textile integrated electronic systems for real-time monitoring of hearth, respiratory and movement parameters on-the-air and in-water through an interdisciplinary approach; - Semiconductor technologies which allow the re-use of micro-nano systems both in the sports and in the healthcare sectors; - Miniaturized devices allowing the capturing of bio-chemical parameters able to withstand harsh ambient conditions such as salt fogs, chlorine, detergents, high and low temperatures, etc. The following key activities are targeted: - Development, prototyping and demonstration of versatile sensors with edge AI features for improved precision and reliability, that can also be integrated in textiles as well as in smart wearable wrist-watches and in sport equipment and gears targeting also underwater applications; - Cloud-edge Artificial Intelligence combined approaches for reliable diagnosis of body parameters. This will comprise sensor’s self-learning, remote update, multi-sensing approaches based on sensor arrays; - Novel materials that support electronics printing in textiles with stretchability and self-healing capabilities. Societal benefits are foreseen in the transition to a healthier lifestyle by promoting regular physical activity through affordable tools and services for a large audience, including people with disabilities. Moreover, this will impact the smart/remote-healthcare sector which will benefit of the availability of low-cost microfabricated solutions for intelligent, versatile, connected body sensors.

    more_vert
  • Funder: European Commission Project Code: 101166707
    Overall Budget: 14,541,600 EURFunder Contribution: 7,742,500 EUR

    The healthcare sector is hindered by several barriers that hamper the application of circular economy principles (e.g. the safety restrictions of the domain limit the use of recycled materials due to the need of materials biocompatibility, and safety in products to be used in the human body). Led by a multidisciplinary consortium of 39 partners (plus 13 industry affiliates) from 15 EU countries plus UK and USA, ENKORE aim to tackle challenges and develop an ecoDesign framework that supports the development of safe and environmental compliant devices eco-responsible packaging, which minimize the environmental impact, reduce the carbon footprint, and maximize the use and preservation of resources. The main goal is to connect the design of the medical devices packages with the end-of-life stage, thus the technologies that support circularity are taken into account at the medical device conception stage. ENKORE framework will be validated in 5 Reference Use Cases (RUCs), led by 5 different health regions that bring HPCs and policy maker, 3 large EU hospitals and the reference network for European Regional and Local Health Authorities (EUREGHA). The project developments and RUCs are supported by several associations and NGOs, a packaging manufacturer and a group of SMEs and researchers, specialists in circularity, LCA, social sciences, environment, circularity, and materials. The validation of the framework shall provide evidence to work with policymakers, creating new or revised standards and create tangible/quantitative evidence. Policy making and regulatory engagement will be strongly performed. The methods and tools comprise Environmental and Social Life Cycle Assessment (ELCA/SLCA), Circularity Calculator (CC) and Digital Product Passport (DPP) approaches, which could be adapted during the second stage of the proposal.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.