Powered by OpenAIRE graph
Found an issue? Give us feedback

G.TEC MEDICAL ENGINEERING GMBH

Country: Austria

G.TEC MEDICAL ENGINEERING GMBH

15 Projects, page 1 of 3
  • Funder: European Commission Project Code: 101099210
    Overall Budget: 2,998,990 EURFunder Contribution: 2,998,990 EUR

    The overall goal of this project is to develop a radically new diagnostic and therapeutic device for neurological applications which combines a highly innovative ultrasound component for brain imaging and focused stimulation of brain regions with advanced electrophysiological measurements of neural activity. First goal of the project is the development of a novel ultrasound (US)-based functional imaging method that, in conjunction with electroencephalography (EEG), allows for high spatiotemporal resolution examination of brain activity. While EEG itself yields best data from neural tissue close to the skull, the US component is designed to deliver images from deeper brain regions. The second pillar of the devices function is focused US brain stimulation. Based on the possibility to localize abnormal activity, the neuromodulation component of the novel device can be guided to focal stimulation of selected brain regions, which can be further developed into a closed-loop design. The full envisioned system is a versatile tool that combines EEG-sensors and US transceivers in a wearable headset. The project foresees the development of hard- and software as well as algorithms to integrate the information from both modalities into functional neuroimaging with unpreceded spatiotemporal resolution. Beyond the technical realization, this project includes a proof of concept study to evaluate and demonstrate practical applicability in healthy participants and in patients with epilepsy, during clinical routine examination, cognitive, and sensory stimulation, including test-retest validation. The new device will reduce the time to examine and treat neurological patients and the cost thereof. The ability to perform better diagnosis via accurate imaging, targeted neurostimulation, and neuromodulation with a cost-effective, non-invasive device will have transformative effects on treatment options for neurological diseases and stimulate new lines of research in cognitive neuroscience

    more_vert
  • Funder: European Commission Project Code: 841116
    Overall Budget: 174,167 EURFunder Contribution: 174,167 EUR

    Recent work has shown that up to 42% of patients diagnosed with a disorder of consciousness (DOC) are misdiagnosed. New EEG system have revealed that some DOC patients can follow basic instructions that do not require any movement, such as imagining movement or counting vibrotactile pulses, which has even allowed them to answer YES/NO questions. This work has provided the foundations for new EEG-based solutions that could go even further – such as predicting clinical outcomes and even providing rehabilitation to facilitate cognitive and motor recovery and emergence into consciousness. The ComAlive project will develop new methods for combining EEG-based assessment and communication tools with prediction and rehab to provide new hope for these patients. The applicant is a practicing neurologist with excellent experience with DOC patients, but does not have training in business, EEG classification methods or software engineering. ComAlive is led by an R&D performing SME with a long history of real-time EEG and biomedical systems, and the other beneficiary is a hospital that is renowned for work with target patients. ComAlive includes extensive dissemination and communication activities to convey our project results to numerous audiences and supplement the ER’s training-by-research. This project will help prepare the ER for a high-impact career working across business, academic, and medical sectors while developing a new industrial system, methods and knowledge that could dramatically impact thousands of lives in the EU alone.

    more_vert
  • Funder: European Commission Project Code: 881603
    Overall Budget: 149,703,008 EURFunder Contribution: 149,703,008 EUR

    This proposal describes the third core project of the Graphene Flagship. It forms the fourth phase of the FET flagship and is characterized by a continued transition towards higher technology readiness levels, without jeopardizing our strong commitment to fundamental research. Compared to the second core project, this phase includes a substantial increase in the market-motivated technological spearhead projects, which account for about 30% of the overall budget. The broader fundamental and applied research themes are pursued by 15 work packages and supported by four work packages on innovation, industrialization, dissemination and management. The consortium that is involved in this project includes over 150 academic and industrial partners in over 20 European countries.

    more_vert
  • Funder: European Commission Project Code: 101046748
    Overall Budget: 2,498,690 EURFunder Contribution: 2,498,690 EUR

    Imaging the brain activity is fundamentally important for many brain-related scientific disciplines. Among the non-invasive neuroimaging strategies, Electroencephalography (EEG) from scalp potentials is one of the primary. In EEG the neuroninduced electric potential is measured by using electrodes on the patient’s scalp. The skull however, highly resistive, shields EEG recordings limiting the spatial resolution. The standard way to avoid skull shielding effects is to invasively implant EEG electrodes under the skull (ECoG) or in the brain cortex (StereoEEG), in both cases after trepanning the patient’s skull. Scalp EEGs are noninvasive but lack spatial imaging accuracy. ECoG and StereoEEG are highly accurate but require skull trepanation and they image only a limited part of the brain. There is the need for increasing the resolution of scalp EEG providing the same level of accuracy of invasive EEGs. This will be the grand challenge which CEREBRO will achieve by conceiving the first ever existing EEG contrast medium, able to provide imaging of the entire brain and in a non-invasive way.

    more_vert
  • Funder: European Commission Project Code: 101184379
    Overall Budget: 3,000,000 EURFunder Contribution: 3,000,000 EUR

    The grand challenge of this project is to create the basis for a paradigm shift in the way music is performed and experienced, by leveraging the new creative possibilities offered by the emerging Musical Metaverse. The consortium aims to achieve this ambitious challenge by means of i) a socio-cognitive breakthrough, by gaining a deep understanding of the emerging needs and concerns of contemporary musicians and audiences via collaborative design activities and neuro-physiological measurements; ii) a technological breakthrough, by developing radically novel concert platforms and devices that can exchange information among each other via ultra-reliable low-latency wireless networks, with privacy and security constraints; iii) a musical breakthrough, by creating novel concert formats that exploit the technological and socio-cognitive breakthroughs. This project uses an interdisciplinary methodology that combines Human-Computer Interaction, Engineering, Cognition, and Music, drawing from the scientific excellence of the partners. Industrial partners will provide know-how for proof of concept prototypes. Through this disruptive approach, the project will provide a pipeline to the technological development of a new class of musical interfaces and Musical Metaverse ecosystems, whose features will go substantially beyond current systems. The proposed approach aspires to effect a step-change in the design of musical interfaces and systems to musically interact online, resulting in a potentially high economic impact on the music industry. The envisioned technological advancements for the musical domain will provide key solutions for true real-time collaborative activities in the Metaverse in general. The project involves theoretical and experimental aspects, and is a high-impact endeavour from which basic science, EU industry and society can benefit.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.