
Fraunhofer UK Research Ltd
Fraunhofer UK Research Ltd
25 Projects, page 1 of 5
assignment_turned_in Project2021 - 2024Partners:Fraunhofer UK Research Ltd, Fraunhofer UK Research Ltd, University of Strathclyde, SU, Alter Technology TUV Nord +3 partnersFraunhofer UK Research Ltd,Fraunhofer UK Research Ltd,University of Strathclyde,SU,Alter Technology TUV Nord,Stanford Synchroton Radiation Laboratory,University of Strathclyde,Stanford UniversityFunder: UK Research and Innovation Project Code: EP/V004859/1Funder Contribution: 509,738 GBPThe silicon electronics industry has two major challenges in the development of new products: demand for increasing levels of processing power on a single chip and the amount of energy required to run these chips. The two challenges are linked, since the more components and communications links that are integrated into the chip, the higher the associated energy usage. While the energy consumption of a single chip is relatively low, this rapidly scales to environmental levels when considering the huge volume of units produced each year is in the order of 10's of billions. Already, large scale data-centres consume around 1% of global electricity demand, so any efficiency gains in the energy consumption of integrated chips will have significant effects. As device dimensions reach fundamental physical limits, chip designers are developing new architectures in order to continue to deliver growth in chip performance. These designs require high bandwidth communications across millimetre length scales, currently realised as simple electronic tracks. By replacing these tracks with optical interconnects, system power consumption can be reduced and communications bandwidth improved. The fundamental challenge for any alternative technology is that it must be compatible with current electronics manufacturing, where vast investments have been made over the last decades. This project will develop an optical interconnect layer that has a link power consumption lower than equivalent electronic lines. The optical layer will be realised as a thin film chip that can be interposed between the silicon device and its packaging, meaning that this process is zero-change with respect to the manufacture of the electronic chips. Recent advances pioneered at the Universities of Strathclyde and Sheffield in ultra-high precision micro-assembly of opto-electronic membrane systems will enable a two stage process that is designed to be compatible with production at scale. Firstly, membrane optical sources, waveguides and detectors will be assembled on a glass chip that incorporates electrical vias. This interposer with integrated optical interconnects will be integrated between the electronic chip and its packaging using micro-assembly processes. The project is supported by industrial partners Alter Technologies and Fraunhofer UK who will provide resources and expertise in opto-electronic packaging and optical systems engineering. This will ensure new process developments with industrial standards and design rules. The proposal aligns with EPSRC's ICT and Manufacturing the Future themes and the Photonics for Future Systems priority, addressing specific portfolio areas such as Manufacturing Technologies, Optical Communications, Optical Devices & Subsystems, Optoelectronic Devices & Circuits, Components & Systems. By the end of the project we will have demonstrated an optical transmission link with energy consumption lower than an equivalent electronic line. This link will be integrated with a commercially available silicon transceiver chip to demonstrate feasibility of developing this technology as a back-end process in the silicon electronics industry.
more_vert assignment_turned_in Project2014 - 2020Partners:National Physical Laboratory NPL, Centre for Quantum Technologies, Satellite Applications Catapult, AWE plc, Electronics and Telecomm Res Inst ETRI +40 partnersNational Physical Laboratory NPL,Centre for Quantum Technologies,Satellite Applications Catapult,AWE plc,Electronics and Telecomm Res Inst ETRI,American Express,Raytheon Systems Ltd,Joint Quantum Institute,NIST (Nat. Inst of Standards and Technol,Google Inc,pureLiFi Ltd,Centre for Quantum Technologies,Cognizant Technology Solutions,Aspen Electronics,Satellite Applications Catapult,Joint Quantum Institute,Google Inc,ETSI,Oxford Capital,Covesion Ltd,AWE,Aspen Electronics,University of Oxford,Fraunhofer UK Research Ltd,TREL,Fraunhofer UK Research Ltd,Defence Science & Tech Lab DSTL,Toshiba Research Europe Ltd,ETRI,NIST (Nat. Inst of Standards and Technol,pureLiFi Ltd,RSL,ETSI,Sofia University,GCHQ,DSTL,Lockheed Martin,Lockheed Martin UK,Oxford Capital,Defence Science & Tech Lab DSTL,American Express,Cognizant Technology Solutions,GCHQ,NPL,COVESION LTDFunder: UK Research and Innovation Project Code: EP/M013243/1Funder Contribution: 38,030,000 GBPThis Hub accelerates progress towards a new "quantum era" by engineering small, high precision quantum systems, and linking them into a network to create the world's first truly scalable quantum computing engine. This new computing platform will harness quantum effects to achieve tasks that are currently impossible. The Hub is an Oxford-led alliance of nine universities with complementary expertise in quantum technologies including Bath, Cambridge, Edinburgh, Leeds, Strathclyde, Southampton, Sussex and Warwick. We have assembled a network of more than 25 companies (Lockheed-Martin, Raytheon BBN, Google, AMEX), government labs (NPL, DSTL, NIST) and SMEs (PureLiFi, Rohde & Schwarz, Aspen) who are investing resources and manpower. Our ambitious flagship goal is the Q20:20 engine - a network of twenty optically-linked ion-trap processors each containing twenty quantum bits (qubits). This 400 qubit machine will be vastly more powerful than anything that has been achieved to date, but recent progress on three fronts makes it a feasible goal. First, Oxford researchers recently discovered a way to build a quantum computer from precisely-controlled qubits linked with low precision by photons (particles of light). Second, Oxford's ion-trap researchers recently achieved a new world record for precision qubit control with 99.9999% accuracy. Third, we recently showed how to control photonic interference inside small silica chips. We now have an exciting opportunity to combine these advances to create a light-matter hybrid network computer that gets the 'best of both worlds' and overcomes long-standing impracticalities like the ever increasing complexity of matter-only systems, or the immense resource requirements of purely photonic approaches. Engineers and scientists with the hub will work with other hubs and partners from across the globe to achieve this. At present proof-of-principle experiments exist in the lab, and the 'grand challenge' is to develop compact manufacturable devices and components to build the Q20:20 engine (and to make it easy to build more). We have already identified more than 20 spin-offs from this work, ranging from hacker-proof communication systems and ultra-sensitive medical and military sensors to higher resolution imaging systems. Quantum ICT will bring great economic benefits and offer technical solutions to as yet unsolveable problems. Just as today's computers allow jet designers to test the aerodynamics of planes before they are built, a quantum computer will model the properties of materials before they've been made, or design a vital drug without the trial and error process. This is called digital quantum simulation. In fact many problems that are difficult using conventional computing can be enhanced with a 'quantum co-processor'. This is a hugely desirable capability, important across multiple areas of science and technology, so much so that even the prospect of limited quantum capabilities (e.g. D-Wave's device) has raised great excitement. The Q20:20 will be an early form of a verifiable quantum computer, the uncompromised universal machine that can ultimately perform any algorithm and scale to any size; the markets and impacts will be correspondingly far greater. In addition to computing there will be uses in secure communications, so that a 'trusted' internet becomes feasible, in sensing - so that we can measure to new levels of precision, and in new components - for instance new detectors that allow us to collect single photons. The hub will ultimately become a focus for an emerging quantum ICT industry, with trained scientists and engineers available to address the problems in industry and the wider world where quantum techniques will be bringing benefits. It will help form new companies, new markets, and grow the UK's knowledge economy.
more_vert assignment_turned_in Project2024 - 2033Partners:GOOCH & HOUSEGO PLC, Skylark Lasers, University of Strathclyde, Sellafield Ltd, Glasgow Science Centre Ltd +30 partnersGOOCH & HOUSEGO PLC,Skylark Lasers,University of Strathclyde,Sellafield Ltd,Glasgow Science Centre Ltd,Chromacity Ltd.,Taylor Hobson Ltd,Canon Medical Research Europe Ltd,THALES UK LIMITED,Edinburgh Instruments Ltd,Scottish Univ Physics Alliance (SUPA),Renishaw plc (UK),Abel and Imray,Fraunhofer UK Research Ltd,Leonardo,Coherent Scotland Ltd,PowerPhotonic Ltd,Wayland Additive Ltd,The Manufacturing Technology Centre Ltd,National Physical Laboratory NPL,Vector Photonics,Wideblue Limited,CENSIS,AlbaSense Ltd,STMicroelectronics,Razorbill Instruments,AWE plc,Alter Technology UK Ltd,Heriot-Watt University,TOSHIBA EUROPE LIMITED,UK Astronomy Technology Centre,Rutherford Appleton Laboratory,Bay Photonics Ltd,OPTOS plc,Federal Standards Laboratory PTB BerlinFunder: UK Research and Innovation Project Code: EP/Y035437/1Funder Contribution: 6,445,420 GBPIn a consortium led by Heriot-Watt with St Andrews, Glasgow, Strathclyde, Edinburgh, Dundee, Huddersfield and NPL, the "EPSRC CDT in Use-Inspired Photonic Sensing and Metrology" responds to the focus area of "Meeting a User-Need and/or Supporting Civic Priorities" and aligns to EPSRC's Frontiers in Engineering & Technology priority and its aim to produce "tools and technologies that form the foundation of future UK prosperity". Our theme recognises the key role that photonic sensing and metrology has in addressing 21st century challenges in transport (LiDAR), energy (wind-turbine monitoring), manufacturing (precision measurement), medicine (disease sensors), agri-food (spectroscopy), security (chemical sensing) and net-zero (hydrocarbon and H2 metrology). Building on the success of our earlier centres, the addition of NPL and Huddersfield to our team reflects their international leadership in optical metrology and creates a consortium whose REF standing, UKRI income and industrial connectivity makes us uniquely able to deliver this CDT. Photonics contributes £15.2bn annually to the UK economy and employs 80,000 people--equal to automotive production and 3x more than pharmaceutical manufacturing. By 2035, more than 60% of the UK economy will rely on photonics to stay competitive. UK companies addressing the photonic sensing and metrology market are therefore vital to our economy but are threatened by a lack of doctoral-level researchers with a breadth of knowledge and understanding of photonic sensing and metrology, coupled with high-level business, management and communication skills. By ensuring a supply of these individuals, our CDT will consolidate the UK industrial knowledge base, driving this high-growth, export-led sector whose products and services have far-reaching impacts on our society. The proposed CDT will train 55 students. These will comprise at least 40 EngD students, characterised by a research project originated by a company and hosted on their site. A complementary stream of up to 15 PhD students will pursue industrially relevant research in university labs, with more flexibility and technical risk than in an EngD project. In preparing this bid, we invited companies to indicate their support, resulting in £5.5M cash commitments for 102 new students, considerably exceeding our target of 55 students, and highlighting industry's appetite for a CDT in photonic sensing and metrology. Our request to EPSRC for £6.13M will support 35 students, with the remaining students funded by industrial (£2.43M) and university (£1.02M) cash contributions, translating to an exceptional 56% cash leverage of studentship costs. The university partners provide 166 named supervisors, giving the flexibility to identify the most appropriate expertise for industry-led EngD projects. These academics' links to >120 named companies also ensure that the networks exist to co-create university-led PhD projects with industry partners. Our team combines established researchers with considerable supervisory experience (>50 full professors) with many dynamic early-career researchers, including a number of prestigious research fellowship holders. A 9-month frontloaded residential phase in St Andrews and Edinburgh will ensure the cohort gels strongly, equipping students with the knowledge and skills they need before starting their research projects. These core taught courses, augmented with electives from the other universities, will total 120 credits and will be supplemented by accredited MBA courses and training in outreach, IP, communication skills, RRI, EDI, sustainability and trusted-research. Collectively, these training episodes will bring students back to Heriot-Watt a few times each year, consolidating their intra- and inter-cohort networks. Governance will follow our current model, with a mixed academic-industry Management Committee and an International Advisory Committee of world-leading experts.
more_vert assignment_turned_in Project2024 - 2027Partners:Thales, Fraunhofer UK Research Ltd, Samsung Advanced Institute of Technology, Vector Photonics, Defence Science & Tech Lab DSTL +7 partnersThales,Fraunhofer UK Research Ltd,Samsung Advanced Institute of Technology,Vector Photonics,Defence Science & Tech Lab DSTL,Photonicity Ltd,DSTL,Aston University,SELEX Sensors & Airborne Systems Ltd,Leonardo (UK),QD Laser Inc,Airbus Defense and SpaceFunder: UK Research and Innovation Project Code: EP/X032868/1Funder Contribution: 944,025 GBPLasers are a key enabling technology in countless areas of modern society, touching on our lives in terms of ubiquitous connectivity, data storage, healthcare, security, environmental monitoring, etc. Examples include telecommunications, where they are used to generate the information carrying optical signals that are transmitted along thin glass optical fibres, manufacturing, where they are used for welding and cutting materials, and medicine, where they are used for sensing blood oxygen levels, and precisely resecting tissues. For almost all laser applications, it is necessary to use the laser source in combination with another technology that directs or "steers" the laser light in the desired direction. In some cases, this technology can be "passive", as is the case with the glass optical fibres used in telecommunications. In other cases, the steering technology must be "active" to change the direction of the laser beam in time, as is the case with the rapidly moving mirror systems used in some laser cutting and laser imaging systems. Conventional active laser steering technologies are often costly, bulky, and fragile. One or more of these disadvantages makes them sub-optimal for many important applications, including laser imaging systems for automotive applications, space-based laser communications systems, and drone-based remote sensing systems. To address this, there is currently a global drive to develop fully integrated solid-state beam-steering technologies, where the laser light is steered without the use of any physically moving components. Currently, however, even state-of-the-art solid-state laser beam steering systems have limited functionality, and do not meet the requirements of many real-world applications. In this project, we will exploit recent advances in two key integrated optical technologies - coherent Photonic Crystal Surface Emitting Laser (PCSEL) diode arrays and three-dimensional optical waveguide devices known as "integrated photonic lanterns" - to develop fully Integrated Solid-State Steerable Lasers (I-STEER) that can deliver agile beam steering in two dimensions and can, in principle, function at any diode laser wavelength. I-STEER will target the development of 900-mode PCSEL arrays, but will deliver the technological advances necessary to enable future PCSEL arrays (using commercial manufacturing facilities) that generate 10's of thousands of independently phase and ampltiude controllable coherent laser modes. A key aim of I-STEER is to enable denser PCSEL arrays, where the laser mode diameter is reduced to 20 microns (~20 wavelengths) and the centre-to-centre separation is reduced to ~50 microns (~50 wavelengths) - current PCSEL arrays exhibit 50 micron diameter laser modes with centre-to-centre separations of 400 microns. Unfortunately, even the ambitious spatial scales we are targeting mean that the PCSEL array will still be unsuitable for direct use as an optical phased array (OPA), since OPAs require very tightly packed wide angle emitters to achieve large angle/lobe free beam-steering. To address this, I-STEER introduces the fresh idea of using three-dimensional integrated optical waveguide transitions known as "integrated photonic lanterns" to adiabatically combine the PCSEL modes into a single highly multimode pattern of light, the spatial phase and amplitude properties of which can be directly controlled for beam steering via the PCSEL drive electronics. Through the I-STEER project, we aim to redefine the laser diode as an all-electronic integrated steerable light source enabling new functionally in countless applications including free-space optical communications and LiDAR. The generation of intellectual property and capability in this area will place the UK in a leading position with regards this strongly growing academic field, wealth generation through the creation of licensing and/or spin-outs, and in early adoption of UK based OEMs of this new technology.
more_vert assignment_turned_in Project2025 - 2033Partners:CENSIS, University of Strathclyde, British Telecommunications plc, Scottish Univ Physics Alliance (SUPA), RedWave Labs +26 partnersCENSIS,University of Strathclyde,British Telecommunications plc,Scottish Univ Physics Alliance (SUPA),RedWave Labs,SeeQC UK,National Physical Laboratory NPL,AWE plc,Kelvin Nanotechnology Ltd,Coherent Scotland Ltd,Riverlane,Glasgow Science Centre Ltd,Bay Photonics Ltd,Rolls-Royce Plc (UK),Oxford Quantum Circuits,Oxford Instruments Plasma Technology,GLOphotonics SAS,THALES UK LIMITED,Amazon Web Services EMEA SARL,Arqit Limited,STMicroelectronics,Fraunhofer UK Research Ltd,Skylark Lasers,QuiX Quantum B.V.,ZURICH INSTRUMENTS AG,Craft Prospect Ltd,M Squared Lasers Ltd,Alter Technology UK Ltd,Wideblue Ltd,MBDA UK Ltd,AegiQFunder: UK Research and Innovation Project Code: EP/Y035089/1Funder Contribution: 7,909,260 GBPQuantum Technology is based on quantum phenomena that govern physics on an atomic scale, enabling key breakthroughs that enhance the performance of classical devices and allow for entirely new applications in communications technology, imaging and sensing, and computation. Quantum networks will provide secure communication on a global scale, quantum sensors will revolutionise measurements in fields such as geology and biomedical imaging, and quantum computers will efficiently solve problems that are intractable even on the best future supercomputers. The economic and societal benefit will be decisive, impacting a wide range of industries and markets, including engineering, medicine, finance, defence, aerospace, energy and transport. Consequently, Quantum Technologies are being prioritised worldwide through large-scale national or trans-national initiatives, and a healthy national industrial Quantum Technology ecosystem has emerged including supply chain, business start-ups, and commercial end users. Our Centre for Doctoral Training in Applied Quantum Technologies (CDT-AQT) will address the national need to train cohorts of future quantum scientists and engineers for this emerging industry. The training program is a partnership between the Universities of Strathclyde, Glasgow and Heriot-Watt. In collaboration with more than 30 UK industry partners, CDT-AQT will offer advanced training in broad aspects of Quantum Technology, from technical underpinnings to applications in the three key areas of Quantum Measurement and Sensing, Quantum Computing and Simulation, and Quantum Communications. Our programme is designed to create a diverse community of responsible future leaders who will tackle scientific and engineering challenges in the emerging industrial landscape, bring innovative ideas to market, and work towards securing the UK's competitiveness in one of the most advanced and promising areas of the high-tech industry. The quality of our training provision is ensured by our supervisors' world-class research backgrounds, well-resourced research environments at the host institutions, and access to national strategic facilities. Industry engagement in co-creation and co-supervision is seen as crucial in equipping our students with the transferable skills needed to translate fundamental quantum physics into practical quantum technologies for research, industry, and society. To benefit the wider community immediately, we will make Quantum Technologies accessible to the general public through dedicated outreach activities, in which our students will showcase their research and exhibit at University Open Days, schools, science centres and science festivals.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right