
Can Superconductors (Czechia)
Can Superconductors (Czechia)
2 Projects, page 1 of 1
assignment_turned_in Project2020 - 2023Partners:CAN Superconductors, s. r. o., Oxford Instruments (United Kingdom), Oxford Instruments (United Kingdom), Oxford Instruments (United Kingdom), Siemens plc (UK) +6 partnersCAN Superconductors, s. r. o.,Oxford Instruments (United Kingdom),Oxford Instruments (United Kingdom),Oxford Instruments (United Kingdom),Siemens plc (UK),University of Cambridge,University of Cambridge,Can Superconductors (Czechia),UNIVERSITY OF CAMBRIDGE,SIEMENS PLC,SIEMENS PLCFunder: UK Research and Innovation Project Code: EP/T014679/1Funder Contribution: 784,207 GBPNMR and MRI are techniques that use the interactions of atoms with external magnetic fields to look inside materials, objects and organisms to study their composition (NMR) and provide images (MRI). They are used very widely in scientific research, medical research and in industry and medicine. Put simply, the stronger the magnetic field available the better these techniques work. Unfortunately, obtaining large magnetic fields (typically 20 -30 times strong than a fridge magnet) generally requires expensive magnets, which are usually wound from long lengths of superconducting wire. It would be ideal to be able to produce these very large magnetic fields in a much simpler fashion to provide convenient and cheap desktop systems. Making these systems widely available and cheaper would allow more scientists, engineers and medical researchers to have access to this equipment, and to use it more often. The importance of this proposed project is underlined by the active participation and practical help offered by our three industrial partners. We are proposing to use ceramic bulk (in disc- or ring-form) superconductors, rather than complex solenoidal coils made from superconducting wire. The three main challenges that must be overcome to do achieve this are (i) making bulk superconductors of sufficient size and uniformity, (ii) making the magnetic field they produce highly uniform, and (iii) developing a practical way of charging bulks samples with magnetic field. To address the first two challenges the Cambridge group, with extensive experience of the fabrication and manufacture of these bulk superconductors, is going to partner with the Oxford group, who have experience of using advanced microscopy to look carefully at the fine details of the manufacturing process. To magnetise the bulk superconductors, we propose to discharge, over a period of several milliseconds, the energy stored in a bank of capacitors into a conventional coil magnet made of copper. Such a copper coil would overheat and melt if were to generate a large magnetic field continuously. However, using this pulsed field magnetisation technique, we can achieve the required field over a short period of time, but long enough to allow the bulk superconductor to "capture" the magnetic field. We will consider the project successful if we can replace the conventional, permanent magnet of an existing NMR system, provided by our industrial partner, with our prototype bulk superconductor based system and demonstrate that it operates effectively at the proton resonance frequency of 200 MHz, rather than at 90 MHz, which is typical of existing permanent magnet systems and a limiting feature of this technology.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::78c8a83e4dc237399ae2a89997f1424a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::78c8a83e4dc237399ae2a89997f1424a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2032Partners:TOKAMAK ENERGY LTD, University of Bristol, Diamond Light Source, ISIS Neutron and Muon Source, CERN +20 partnersTOKAMAK ENERGY LTD,University of Bristol,Diamond Light Source,ISIS Neutron and Muon Source,CERN,Cryogenic Ltd,CCFE/UKAEA,LNCMI,Oxford Magnet Technology Ltd,Clevedon School,Cast,ICE Oxford Limited,Conectus,Can Superconductors (Czechia),Veir,Henry Royce Institute,Oxford Quantum Solutions,Oxford Instruments (United Kingdom),Hochfeld-Magnetlabor Dresden,National Grid Electricity Transmission,HFML-FELIX,European Magnetic Field Laboratory,National High Magnetic Field Laboratory,Karlsruhe Institute of Technology (KIT),Razorbill InstrumentsFunder: UK Research and Innovation Project Code: EP/Y035453/1Funder Contribution: 6,018,760 GBPThe aim of this Centre for Doctoral Training (CDT) is to equip students with essential interdisciplinary skills needed by industry and to deliver cutting edge research in the area of superconductivity. The unique properties of superconducting materials mean that they can deliver revolutionary technologies which will help to decarbonize our energy production and improve healthcare. Superconductors are also an essential component in many quantum devices such as those used for quantum computing. The promise of limitless carbon free power promised by magnetically confined plasma nuclear fusion reactors can only be realised using superconducting magnets. Other major applications under development, which also will contribute to reducing carbon emissions include superconducting cables for electrical power transmission, light and powerful motors and generators for electric and hybrid power aircraft, superconducting magnetically levitating trains and high efficiency generators for wind-power generators. Development, manufacture, and deployment of these technologies needs people with the skills our CDT will deliver. Superconductors are also an essential component in magnetic resonance imaging (MRI) machines used for medical diagnosis and this forms the majority of the current £7 billion per annum market in superconductors that is projected to double by 2030. Development of improved superconducting materials will transform MRI both in terms of reducing cost and thereby availability and enabling higher magnetic field strengths that increase resolution and enhanced diagnostic capabilities. We will capitalize on the UK's established leadership in superconductivity through the development of a CDT with cohort-based training that will engender teamwork and an interdisciplinary approach in close collaboration with industry and international research facility partners. This is crucial to drive the development of these groundbreaking superconducting technologies and to empower our graduates with the combination of technical and personal skills sought after by industry. The CDT brings together graduate superconductivity training in the Universities of Bristol, Oxford and Cambridge across their Physics, Material Science, Engineering and Chemistry departments. The CDT is created in partnership with 26 industrial companies, international research institutions and other educational institutions. Our training programme includes lecture-based learning, extensive practical training in relevant techniques and experimental methods as well as real-world experience at implementing the knowledge gained within projects based at one of our partners. The CDT will form a nucleus for the UK superconductivity community offering training and networking opportunities to those outside of the CDT.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::90ef61ccd77b56be1d698e3fe4afc916&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::90ef61ccd77b56be1d698e3fe4afc916&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu