
Alter Technology UK Ltd
Alter Technology UK Ltd
6 Projects, page 1 of 2
assignment_turned_in Project2024 - 2029Partners:Onsemi, BMW AG Munich (Germany), Fraunhofer IKT (Inst Ceramic Tech & Sys), PowerAmerica, Hitachi Energy (previously ABB) +31 partnersOnsemi,BMW AG Munich (Germany),Fraunhofer IKT (Inst Ceramic Tech & Sys),PowerAmerica,Hitachi Energy (previously ABB),Ampaire Inc,WEST OF ENGLAND COMBINED AUTHORITY,Siemens plc (UK),UK Atomic Energy Authority (UKAEA),Centre for Nano Science and Engineering,Cambridge GaN Devices Ltd,University of Bristol,Supergen Energy Networks Hub,Vishay Intertechnology Inc,Toshiba Europe Limited,Quantum Focus Instruments Corporation,Clas-SiC Wafer Fab Ltd,Nagoya University,Alter Technology UK Ltd,TAE Power Solutions,MakeUK,Oxford Instruments Group (UK),Compound Semiconductor App. Catapult,KLA,Bosch,SILVACO,Element Six (UK) Ltd,The Faraday Institution,S T Microelectronics,National Composites Centre,Renesas Electronics,THERS,Sumitomo Chemical Group,Zeiss (UK),IQE PLC,General ElectricFunder: UK Research and Innovation Project Code: EP/Z531091/1Funder Contribution: 11,748,800 GBPCo-created and delivered with industry, REWIRE will accelerate the UK's ambition for net zero by transforming the next generation of high voltage electronic devices using wide/ultra-wide bandgap (WBG/UWBG) compound semiconductors. Our application-driven, collaborative research programme and training will advance the next generation of semiconductor power device technologies to commercialisation and enhance the security of the UK's semiconductor supply-chain. Power devices are at the centre of all power electronic systems. WBG/UWBG compound semiconductor devices pave the way for more efficient and compact power electronic systems, reducing energy loss at the power systems level. The UK National Semiconductor Strategy recognises advances in these technologies and the technical skills required for their development and manufacture as essential to supporting the growing net zero economy. REWIRE's philosophy is centred on cycles of use cases co-created with industry and stakeholders, meeting market needs for devices with increased voltage ranges, maturity and reliability. We will develop multiple technologies in parallel from a range of initial TRL to commercialisation. Initial work will focus on three use cases co-developed with industry, for transformative next generation WBG/UWBG semiconductor power electronic devices: (1) Wind energy, HVDC networks (>10 kV) - increased range high voltage devices as the basis for enabling more efficient power conversion and more compact power converters; (2) High temperature applications, device and packaging - greatly expanded application ranges for power electronics; (3) Tools for design, yield and reliability - improving the efficiency of semiconductor device manufacture. These use cases will: improve higher TRL Silicon Carbide (SiC) 1-2kV technology towards higher voltages; advance low TRL devices such as Gallium Oxide (Ga2O3) and Aluminium Gallium Nitride (AlGaN), diamond and cubic Boron Nitride (c-BN) towards demonstration and ultimately commercialisation; and develop novel heterogenous integration techniques, either within a semiconductor chip or within a package, for enhanced functionality. Use cases will have an academic and industry lead, fostering academia-industry co-development across different work packages. These initial, transformative REWIRE technologies will have wide-ranging applications. They will enhance the efficient conversion of electricity to and from High Voltage Direct Current (HVDC) for long-distance transfer, enabling a sustainable national grid with benefits including more reliable and secure communication systems. New technologies will also bring competitive advantage to the UK's strategically important electric vehicle and battery sectors, through optimised efficiency in charging, performance, energy conversion and management. New use cases will be co-developed throughout REWIRE, with our >30 industrial and policy partners who span the full semiconductor device supply chain, to meet stakeholder priorities. Through engagement with suppliers, manufacturers, and policymakers, REWIRE will pioneer advances in semiconductor supply chain management, developing supply chain tools for stakeholders to improve understanding of the dynamics of international trade, potential supply disruptions, and pricing volatilities. These tools and our Supply Chain Resilience Guide will support the commercialisation of technologies from use cases, enabling users to make informed decisions to enhance resilience, sustainability, and inclusion. Equity, Diversity, and Inclusivity (EDI) are integral to REWIRE's ambitions. Through extensive collaboration across the academic and industrial partners, we will build the diverse, skilled workforce needed to accelerate innovation in academia and industry, creating resilient UK businesses and supply chains.
more_vert assignment_turned_in Project2024 - 2033Partners:GOOCH & HOUSEGO PLC, Skylark Lasers, University of Strathclyde, Sellafield Ltd, Glasgow Science Centre Ltd +30 partnersGOOCH & HOUSEGO PLC,Skylark Lasers,University of Strathclyde,Sellafield Ltd,Glasgow Science Centre Ltd,Chromacity Ltd.,Taylor Hobson Ltd,Canon Medical Research Europe Ltd,THALES UK LIMITED,Edinburgh Instruments Ltd,Scottish Univ Physics Alliance (SUPA),Renishaw plc (UK),Abel and Imray,Fraunhofer UK Research Ltd,Leonardo,Coherent Scotland Ltd,PowerPhotonic Ltd,Wayland Additive Ltd,The Manufacturing Technology Centre Ltd,National Physical Laboratory NPL,Vector Photonics,Wideblue Limited,CENSIS,AlbaSense Ltd,STMicroelectronics,Razorbill Instruments,AWE plc,Alter Technology UK Ltd,Heriot-Watt University,TOSHIBA EUROPE LIMITED,UK Astronomy Technology Centre,Rutherford Appleton Laboratory,Bay Photonics Ltd,OPTOS plc,Federal Standards Laboratory PTB BerlinFunder: UK Research and Innovation Project Code: EP/Y035437/1Funder Contribution: 6,445,420 GBPIn a consortium led by Heriot-Watt with St Andrews, Glasgow, Strathclyde, Edinburgh, Dundee, Huddersfield and NPL, the "EPSRC CDT in Use-Inspired Photonic Sensing and Metrology" responds to the focus area of "Meeting a User-Need and/or Supporting Civic Priorities" and aligns to EPSRC's Frontiers in Engineering & Technology priority and its aim to produce "tools and technologies that form the foundation of future UK prosperity". Our theme recognises the key role that photonic sensing and metrology has in addressing 21st century challenges in transport (LiDAR), energy (wind-turbine monitoring), manufacturing (precision measurement), medicine (disease sensors), agri-food (spectroscopy), security (chemical sensing) and net-zero (hydrocarbon and H2 metrology). Building on the success of our earlier centres, the addition of NPL and Huddersfield to our team reflects their international leadership in optical metrology and creates a consortium whose REF standing, UKRI income and industrial connectivity makes us uniquely able to deliver this CDT. Photonics contributes £15.2bn annually to the UK economy and employs 80,000 people--equal to automotive production and 3x more than pharmaceutical manufacturing. By 2035, more than 60% of the UK economy will rely on photonics to stay competitive. UK companies addressing the photonic sensing and metrology market are therefore vital to our economy but are threatened by a lack of doctoral-level researchers with a breadth of knowledge and understanding of photonic sensing and metrology, coupled with high-level business, management and communication skills. By ensuring a supply of these individuals, our CDT will consolidate the UK industrial knowledge base, driving this high-growth, export-led sector whose products and services have far-reaching impacts on our society. The proposed CDT will train 55 students. These will comprise at least 40 EngD students, characterised by a research project originated by a company and hosted on their site. A complementary stream of up to 15 PhD students will pursue industrially relevant research in university labs, with more flexibility and technical risk than in an EngD project. In preparing this bid, we invited companies to indicate their support, resulting in £5.5M cash commitments for 102 new students, considerably exceeding our target of 55 students, and highlighting industry's appetite for a CDT in photonic sensing and metrology. Our request to EPSRC for £6.13M will support 35 students, with the remaining students funded by industrial (£2.43M) and university (£1.02M) cash contributions, translating to an exceptional 56% cash leverage of studentship costs. The university partners provide 166 named supervisors, giving the flexibility to identify the most appropriate expertise for industry-led EngD projects. These academics' links to >120 named companies also ensure that the networks exist to co-create university-led PhD projects with industry partners. Our team combines established researchers with considerable supervisory experience (>50 full professors) with many dynamic early-career researchers, including a number of prestigious research fellowship holders. A 9-month frontloaded residential phase in St Andrews and Edinburgh will ensure the cohort gels strongly, equipping students with the knowledge and skills they need before starting their research projects. These core taught courses, augmented with electives from the other universities, will total 120 credits and will be supplemented by accredited MBA courses and training in outreach, IP, communication skills, RRI, EDI, sustainability and trusted-research. Collectively, these training episodes will bring students back to Heriot-Watt a few times each year, consolidating their intra- and inter-cohort networks. Governance will follow our current model, with a mixed academic-industry Management Committee and an International Advisory Committee of world-leading experts.
more_vert assignment_turned_in Project2024 - 2029Partners:Nokia Bell Labs, Digital Catapult, Arqit Limited, Quantinuum, AegiQ +37 partnersNokia Bell Labs,Digital Catapult,Arqit Limited,Quantinuum,AegiQ,Oxford Quantum Circuits,LTIMindtree,KETS Quantum Security Ltd,Quantum Dice,Cyber Reach,Nu Quantum,Craft Prospect Ltd,Veriqloud,euNetworks Fiber UK Ltd,Alter Technology UK Ltd,nodeQ,Crypta Labs Ltd,PsiQuantum Ltd,Wideblue Ltd,ORCA Computing Ltd,Honeywell UK,Fortanix,Duality Quantum Photonics Ltd,Satellite Applications Catapult,CENSIS,National Cyber Security Centre,Heriot-Watt University,Scottish Enterprise,Bay Photonics Ltd,ID Quantique,BT plc,Angoka Limited,Chase Cryogenics,Leonardo,Amazon Web Services EMEA SARL,ETSI,Coherent Corp,Technology Scotland,Elson Space Engineering,Ciena Ltd,Quandela SAS,Toshiba Research Europe LimitedFunder: UK Research and Innovation Project Code: EP/Z533208/1Funder Contribution: 21,272,300 GBPo achieve this vision, we will address major global research challenges towards the establishment of the "quantum internet" —?globally interlinked quantum networks which connect quantum nodes via quantum channels co-existing with classical telecom networks. These research challenges include: low-noise quantum memories with long storage time; connecting quantum processors at all distance scales; long-haul and high-rate quantum communication links; large-scale entanglement networks with agile routing capabilities compatible with - and embedded in - classical telecommunicatons networks; cost-effective scalability, standardisation, verification and certification. By delivering technologies and techniques to our industrial innovation partners, the IQN Hub will enable UK academia, national laboratories, industry, and end-users to be at the forefront of the quantum networking revolution. The Hub will utilise experience in the use of photonic entanglement for quantum key distribution (QKD) alongside state-of-the art quantum memory research from existing EPSRC Quantum Technology Hubs and other projects to form a formidable consortium tackling the identified challenges. We will research critical component technology, which will underpin the future national supply chain, and we will make steps towards global QKD and the intercontinental distribution of entanglement via satellites. This will utilise the Hub Network's in-orbit demonstrator due to be launched in late 2024, as well as collaboration with upcoming international missions. With the National Quantum Computing Centre (NQCC), we will explore applications towards quantum advantage demonstrations such as secure access to the quantum cloud, achievable only through entanglement networks. Hub partner National Physical Laboratory (NPL) working with our academic partners and the National Cyber Security Centre (NCSC) will ensure that our efforts are compatible with emerging quantum regulatory standards and post-quantum cybersecurity to bolster national security. We will foster synergies with competing international efforts through healthy exchange with our global partners. The Hub's strong industrial partner base will facilitate knowledge exchange and new venture creation. Achieving the IQN Hub's vision will provide a secure distributed and entanglement-enabled quantum communication infrastructure for UK end-users. Industry, government stakeholders and the public will be able to secure data in transit, in storage and in computation, exploiting unique quantum resources and functionalities. We will use a hybrid approach with existing classical cyber-security standards, including novel emerging post-quantum algorithms as well as hardware security modules. We will showcase our ambition with target use-cases that have emerged as barriers for industry, after years of investigation within the current EPSRC QT Hubs as well as other international efforts. These barriers include security and integrity of: (1) device authentication, identification, attestation, verification; (2) distributed and cloud computing; (3) detection, measurement, sensing, synchronisation. We will demonstrate novel applications as well as identify novel figures of merit (such as resilience, accuracy, sustainability, communication complexity, cost, integrity, etc.) beyond security enhancement alone to ensure the national quantum entanglement network can be fully exploited by our stakeholders and our technology can be rapidly translated into a commercial setting.
more_vert assignment_turned_in Project2024 - 2029Partners:Synopsys (Northern Europe Ltd.), TOSHIBA EUROPE LIMITED, Nanyang Technological University, UMA, Compugraphics International Ltd +103 partnersSynopsys (Northern Europe Ltd.),TOSHIBA EUROPE LIMITED,Nanyang Technological University,UMA,Compugraphics International Ltd,Cadence Design Systems Ltd,University of Salford,University of Aberdeen,Technical University of Bari,Aston University,Imperial College London,Leonardo,Swansea University,National Physical Laboratory NPL,Lancaster University,Camgraphic Ltd,Digital Catapult,Light Trace Photonics Ltd,Luceda Photonics,Optalysys Ltd,University of Sheffield,Seagate Technology (Ireland),UCC,Lightelligence,Octopus Ventures,Cambridge Consultants Ltd,G&H Photonics,LMU,IBM Research GmBh,Microsoft,University of Bristol,Renishaw plc (UK),Compound Semiconductor App. Catapult,Solent LEP,Aberystwyth University,Xanadu,Trellisense,British Telecommunications plc,The University of Manchester,University of Southampton,iPronics Programmable Photonics,University of Birmingham,Bioherent,CNRS,Aberystwyth University,Rockley Photonics Limited (UK),University of Twente,CMC Microsystems,Lumiphase AG,UNIVERSITY OF EXETER,SENKO Advanced Components,University of Huddersfield,PhotonIP,University of Nottingham,Wave Photonics,Resolute Photonics (UK) Ltd,Europractice,National Quantum Computing Centre,Tech Tour Europe,Nanoscribe GmbH,UNIPV,Institute of High Performance Computing,Heriot-Watt University,University of Strathclyde,Quantinuum,UNIVERSITY OF CAMBRIDGE,Sivers Photonics Ltd,Google Inc,Photonics Leadership Group,CompoundTek Pte Ltd,CARDIFF UNIVERSITY,PsiQuantum Ltd,Intel Corporation (UK) Ltd,Siloton Ltd,ČVUT,University of St Andrews,IQE PLC,Alter Technology UK Ltd,Technology Scotland,Silicon Catalyst UK Ltd,UV,Tyndall National Institute (TNI),PICadvanced,ePIXfab,Akhetonics,University of York,Newcastle University,CNIT,Durham University,Polytechnic University of Milan,Duality Quantum Photonics Ltd,Loughborough University,TU Delft,Pointcloud,InSpek,Zero Point Motion Ltd,McMaster University,Oxford Instruments Group (UK),QinetiQ,Elforlight Ltd,QUB,Photronics (U K) Ltd,Aquark Technologies,ROYAL HOLLOWAY UNIV OF LONDON,Scottish Enterprise,Plasmore Srl,Bay Photonics Ltd,Stanford UniversityFunder: UK Research and Innovation Project Code: EP/Z531066/1Funder Contribution: 11,782,400 GBPHowever, access to silicon prototyping facilities remains a challenge in the UK due to the high cost of both equipment and the cleanroom facilities that are required to house the equipment. Furthermore, there is often a disconnect in communication between industry and academia, resulting in some industrial challenges remaining unsolved, and support, training, and networking opportunities for academics to engage with commercialisation activities isn't widespread. The C-PIC host institutions comprising University of Southampton, University of Glasgow and the Science and Technologies Facilities Council (STFC), together with 105 partners at proposal stage, will overcome these challenges by uniting leading UK entrepreneurs and researchers, together with a network of support to streamline the route to commercialisation, translating a wide range of technologies from research labs into industry, underpinned by the C-PIC silicon photonics prototyping foundry. Applications will cover data centre communications; sensing for healthcare, the environment & defence; quantum technologies; artificial intelligence; LiDAR; and more. We will deliver our vision by fulfilling these objectives: Translate a wide range of silicon photonics technologies from research labs into industry, supporting the creation of new companies & jobs, and subsequently social & economic impact. Interconnect the UK silicon photonics ecosystem, acting as the front door to UK expertise, including by launching an online Knowledge Hub. Fund a broad range of Innovation projects supporting industrial-academic collaborations aimed at solving real world industry problems, with the overarching goal of demonstrating high potential solutions in a variety of application areas. Embed equality, diversity, and inclusion best practice into everything we do. Deliver the world's only open source, fully flexible silicon photonics prototyping foundry based on industry-like technology, facilitating straightforward scale-up to commercial viability. Support entrepreneurs in their journey to commercialisation by facilitating networks with venture capitalists, mentors, training, and recruitment. Represent the interests of the community at large with policy makers and the public, becoming an internationally renowned Centre able to secure overseas investment and international partners. Act as a convening body for the field in the UK, becoming a hub of skills, knowledge, and networking opportunities, with regular events aimed at ensuring possibilities for advancing the field and delivering impact are fully exploited. Increase the number of skilled staff working in impact generating roles in the field of silicon photonics via a range of training events and company growth, whilst routinely seeking additional funding to expand training offerings.
more_vert assignment_turned_in Project2025 - 2033Partners:CENSIS, University of Strathclyde, British Telecommunications plc, Scottish Univ Physics Alliance (SUPA), RedWave Labs +26 partnersCENSIS,University of Strathclyde,British Telecommunications plc,Scottish Univ Physics Alliance (SUPA),RedWave Labs,SeeQC UK,National Physical Laboratory NPL,AWE plc,Kelvin Nanotechnology Ltd,Coherent Scotland Ltd,Riverlane,Glasgow Science Centre Ltd,Bay Photonics Ltd,Rolls-Royce Plc (UK),Oxford Quantum Circuits,Oxford Instruments Plasma Technology,GLOphotonics SAS,THALES UK LIMITED,Amazon Web Services EMEA SARL,Arqit Limited,STMicroelectronics,Fraunhofer UK Research Ltd,Skylark Lasers,QuiX Quantum B.V.,ZURICH INSTRUMENTS AG,Craft Prospect Ltd,M Squared Lasers Ltd,Alter Technology UK Ltd,Wideblue Ltd,MBDA UK Ltd,AegiQFunder: UK Research and Innovation Project Code: EP/Y035089/1Funder Contribution: 7,909,260 GBPQuantum Technology is based on quantum phenomena that govern physics on an atomic scale, enabling key breakthroughs that enhance the performance of classical devices and allow for entirely new applications in communications technology, imaging and sensing, and computation. Quantum networks will provide secure communication on a global scale, quantum sensors will revolutionise measurements in fields such as geology and biomedical imaging, and quantum computers will efficiently solve problems that are intractable even on the best future supercomputers. The economic and societal benefit will be decisive, impacting a wide range of industries and markets, including engineering, medicine, finance, defence, aerospace, energy and transport. Consequently, Quantum Technologies are being prioritised worldwide through large-scale national or trans-national initiatives, and a healthy national industrial Quantum Technology ecosystem has emerged including supply chain, business start-ups, and commercial end users. Our Centre for Doctoral Training in Applied Quantum Technologies (CDT-AQT) will address the national need to train cohorts of future quantum scientists and engineers for this emerging industry. The training program is a partnership between the Universities of Strathclyde, Glasgow and Heriot-Watt. In collaboration with more than 30 UK industry partners, CDT-AQT will offer advanced training in broad aspects of Quantum Technology, from technical underpinnings to applications in the three key areas of Quantum Measurement and Sensing, Quantum Computing and Simulation, and Quantum Communications. Our programme is designed to create a diverse community of responsible future leaders who will tackle scientific and engineering challenges in the emerging industrial landscape, bring innovative ideas to market, and work towards securing the UK's competitiveness in one of the most advanced and promising areas of the high-tech industry. The quality of our training provision is ensured by our supervisors' world-class research backgrounds, well-resourced research environments at the host institutions, and access to national strategic facilities. Industry engagement in co-creation and co-supervision is seen as crucial in equipping our students with the transferable skills needed to translate fundamental quantum physics into practical quantum technologies for research, industry, and society. To benefit the wider community immediately, we will make Quantum Technologies accessible to the general public through dedicated outreach activities, in which our students will showcase their research and exhibit at University Open Days, schools, science centres and science festivals.
more_vert
chevron_left - 1
- 2
chevron_right