Powered by OpenAIRE graph
Found an issue? Give us feedback

Applied Materials Inc

Applied Materials Inc

6 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/L01548X/1
    Funder Contribution: 4,523,740 GBP

    The proposed EPSRC CDT in the Science and Applications of Graphene and Related Nanomaterials will respond to the UK need to train specialists with the skills to manipulate new strictly two-dimensional (2D) materials, in particular graphene, and work effectively across the necessary interdisciplinary boundaries. Graphene has been dubbed a miracle material due to the unique combination of superior electronic, mechanical, optical, chemical and biocompatible properties suitable for a large number of realistic applications. The potential of other 2D materials (e.g. boron nitride, transition metal and gallium dichalcogenides) has become clear more recently and already led to developing 'materials on demand'. The proposed CDT will build on the world-leading research in graphene and other 2D nanomaterials at the Universities of Manchester (UoM) and Lancaster (LU). In the last few years this research has undergone huge expansion from fundamental physics into chemistry, materials science, characterization, engineering, and life sciences. The importance of developing graphene-based technology has been recognized by recent large-scale investments from UK and European governments, including the establishment of the National Graphene Institute (NGI) at UoM and the award of 'Graphene Flagship' funding by the European Commission within the framework of the Future and Emerging Technologies (Euro1 billion over the next 10 years), aiming to support UK and European industries.Tailored training of young researchers in these areas has now become urgent as numerous companies and spin-offs specializing in electronics, energy storage, composites, sensors, displays, packaging and separation techniques have joined the race and are investing heavily in development of graphene-based technologies. Given these developments, it is of national importance that we establish a CDT that will train the next generation of scientists and engineers who will able to realise the huge potential of graphene and related 2D materials, driving innovation in the UK, Europe and beyond. The CDT will work with industrial partners to translate the results of academic research into real-world applications in the framework of the NGI and support the highly successful research base at UoM and LU. The new CDT will build directly on the structures and training framework developed for the highly successful North-West Nanoscience DTC (NOWNANO). The central achievement of NOWNANO has been creating a wide ranging interdisciplinary PhD programme, educating a new type of specialist capable of thinking and working across traditional discipline boundaries. The close involvement of the medical/life sciences with the physical sciences was another prominent and successful feature of NOWNANO and one we will continue in the new CDT. In addition to interdisciplinarity, an important feature of the new CDT will be the engagement with a broad network of users in industry and society, nationally and internationally. The students will start their 4-year PhD with a rigorous, bespoke 6-month programme of taught and assessed courses covering a broad range of nanoscience and nanotechnology, extending beyond graphene to other nanomaterials and their applications. This will be followed by challenging, interdisciplinary research projects and a programme of CDT-wide events (annual conferences, regular seminars, training in transferable skills, commercialization training, outreach activities). International experience will be provided by visiting academics and secondments to overseas partners. Training in knowledge transfer will be a prominent feature of the proposed programme, including a bespoke course 'Innovation and Commercialisation of Research' to which our many industrial partners will contribute, and industrial experience in the form of 3 to 6 months secondments that each CDT student will undertake in the course of their PhD.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S022953/1
    Funder Contribution: 6,030,750 GBP

    Topic of Centre: This i4Nano CDT will accelerate the discovery cycle of functional nanotechnologies and materials, effectively bridging from ground-breaking fundamental science toward industrial device integration, and to drive technological innovation via an interdisciplinary approach. A key overarching theme is understanding and control of the nano-interfaces connecting complex architectures, which is essential for going beyond simple model systems and key to major advances in emerging scientific grand challenges across vital areas of Energy, Health, Manufacturing (particularly considering sustainability), ICT/Internet of things, and Quantum. We focus on the science of nano-interfaces across multiple time scales and material systems (organic-inorganic, bio-nonbio interfaces, gas-liquid-solid, crystalline-amorphous), to control nano-interfaces in a scalable manner across different size scales, and to integrate them into functional systems using engineering approaches, combining interfaces, integration, innovation, and interdisciplinarity (hence 'i4Nano'). The vast range of knowledge, tools and techniques necessary for this underpins the requirement for high-quality broad-based PhD training that effectively links scientific depth and application breadth. National Need: Most breakthrough nanoscience as well as successful translation to innovative technology relies on scientists bridging boundaries between disciplines, but this is hindered by the constrained subject focus of undergraduate courses across the UK. Our recent industry-academia nano-roadmapping event attended by numerous industrial partners strongly emphasised the need for broadly-trained interdisciplinary nanoscience acolytes who are highly valuable across their businesses, acting as transformers and integrators of new knowledge, crucial for the UK. They consistently emphasise there is a clear national need to produce this cadre of interdisciplinary nanoscientists to maintain the UK's international academic leadership, to feed entrepreneurial activity, and to capitalise industrially in the UK by driving innovations in health, energy, ICT and Quantum Technologies. Training Approach: The vision of this i4Nano CDT is to deliver bespoke training in key areas of nano to translate exploratory nanoscience into impactful technologies, and stimulate new interactions that support this vision. We have already demonstrated an ability to attract world-class postgraduates and build high-calibre cohorts of independent young Nano scientists through a distinctive PhD nursery in our current CDT, with cohorts co-housed and jointly mentored in the initial year of intense interdisciplinary training through formal courses, practicals and project work. This programme encourages young researchers to move outside their core disciplines, and is crucial for them to go beyond fragmented graduate training normally experienced. Interactions between cohorts from different years and different CDTs, as well as interactions with >200 other PhD researchers across Cambridge, widens their horizons, making them suited to breaking disciplinary barriers and building an integrated approach to research. The 1st year of this CDT course provides high-quality advanced-level training prior to final selection of preferred PhD research projects. Student progression will depend on passing examinable components assessed both by exams and coursework, providing a formal MRes qualification. Components of the first year training include lectures and practicals on key scientific topics, mini/midi projects, science communication and innovation/scale-up training, and also training for understanding societal and ethical dimensions of Nanoscience. Activities in the later years include conferences, pilot projects, further innovation and scale up training, leadership and team-building weekends, and ED&I and Responsible Innovation workshops

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P027032/1
    Funder Contribution: 373,054 GBP

    High quality, low temperature-grown thin film metal oxides are urgently needed for a wide range of emerging electronic applications relating to the Internet of Things. Numerous energy harvesting, generation and storage devices also rely on obtaining such films. The market is huge (>$100Bn) for such devices. However, manufacturing techniques cannot deliver the required high quality oxides simultaneously with the necessary low-temperature processing. The main focus of this proposal is to develop a manufacturing tool to rapidly synthesise, at low temperatures, high quality p-type oxides for flexible CMOS devices. Such devices are currently unavailable. The work will also have broad ramifications for the manufacturing of a wide range of oxide thin film applications beyond CMOS. The work is novel both in terms of the manufacturing tool (atmospheric vapour pressure spatial atomic layer deposition, AP-SALD) and the processing methodology (inducing surface quasi-liquids to strongly improve film crystallinity and carrier mobility). The tool and the process are together essential for enabling a step-change in the production of commercial flexible devices incorporating oxides. We will work closely with PragmatIC, a fast growing start-up in the area, who have committed both cash and in-kind support to the project as well as with Applied Materials, a large equipment manufacturer, the world leaders in industrial ALD, who are in an excellent position and also have interest in commercialising the AP-SALD manufacturing tool.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/X011356/1
    Funder Contribution: 1,518,050 GBP

    This fellowship will lay the foundations for a new AI paradigm featuring algorithms based on the free energy principle (FEP) and hardware platforms leveraging the stochasticity of novel nanoscale devices based on 2-dimensional materials, enabling embedded systems with unprecedented efficiency. Artificial Intelligence (AI) models based on deep learning algorithms have demonstrated super-human performance for a wide variety of such tasks - ranging from language translation to protein folding. However, the cost of developing such models - both in terms of energy and time - has been sky-rocketing. For example, recent studies estimate that the carbon footprint for training a state-of-the-art language translation model can be as high as 3 round-trip flights between New York and San Francisco. One major contributor to this inefficiency is the von Neumann architecture used in today's computing platforms - the data storage and data processing units are physically separated. Hence, running these algorithms require data that is represented in high precision to be constantly shuttled back and forth. Contrast this with the human brain, nature's most evolved computation engine, which continuously makes complex cognitive decisions, that too based on noisy sensory data and an imprecise computational infrastructure. The brain achieves this amazing feat by encoding information in tiny electrical signals called spikes that are transmitted through a seamlessly interconnected network of 'logic' and 'memory' units - neurons and synapses - all while consuming less than 20 Watts. Clearly, there is something fundamentally unique about the algorithms and hardware of the brain! The research in this fellowship is motivated by a theory called the free energy principle (FEP), which provides a unified foundation that underlies the cognitive efficiency of the brain. The central tenet of FEP is that biological organisms tend to minimize the occurrence of surprising events by acting to change the sensory inputs they receive from the environment or by modifying the internal states that allow them to perceive the world and make decisions. Furthermore, since the theoretical foundation of FEP assumes that the brain's models are inherently probabilistic, representing data or the model in high precision is not a strict requirement. Hence, the research in the fellowship will pursue the novel approach of using the undesirable imperfections of nanoscale devices as a resource for implementing the probabilistic parameters of the model. This approach can hence lead to computational systems with unprecedented efficiency as the basic building blocks can be operated at drastically lower voltages and currents, avoiding unnecessary data movement. This research will first develop artificial neural networks that mimic the spike-triggered communication feature of the brain based on the mathematical ideas of the free energy principle. We will create AI models that can generate decisions that are trustworthy and can be supported with quantifiable confidence metrics. In parallel, we will also demonstrate prototype hardware platforms that implement these algorithms using the stochastic properties of nanoscale devices as a resource for computation. Hardware prototypes will be built using novel nanoscale devices that are based on 2-dimensional materials as well as nanoscale memory arrays built by industrial partners targeting a 1000-fold improvement in computational efficiency compared to what is possible today. Thus, the fellowship will lay the foundations of a new Smart and Green AI paradigm.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P007767/1
    Funder Contribution: 2,098,620 GBP

    The Centre of Advanced Materials for Integrated Energy Systems (CAM-IES) is a partnership between four UK universities, Cambridge, Newcastle, Queen Mary and University College London, focused on the development of advanced materials for energy conversion and energy storage based on solid-state, higher voltage, and flow batteries, solid-oxide fuel cells (SOFCs), CO2 gas separation membranes, hybrid thin film photovoltaics (PVs) and large-area thermoelectrics for future renewable and clean energy systems. The overarching goal of CAM-IES it to help build a UK-wide community of cross-disciplinary materials researchers focused on energy applications. We target off-grid/grid-tied applications, large-/grid-scale centralised energy generation and storage and energy solutions for mobile internet communication technologies. CAM-IES will provide a forum for scientific collaboration and exchange as well as access to state-of-the art characterisation and growth equipment to the wider UK energy materials community, in particular the unique facilities of the Sir Henry Royce Institute currently being installed in Cambridge. We exploit currently unexplored synergies between these different energy fields, and combine fundamental energy materials research aimed at making significant scientific breakthroughs, including, discovery of new materials, understanding and controlling interfaces, novel integrated device concepts, achieving enhanced device performances, all with strong industry engagement. The latter will include early shaping workshops with industrial partners to identify requirements for materials in specific applications and the establishment of effective methods for evaluating new materials discoveries for industrial scale-up. The research programmes are focused around six work packages (WPs), aimed at addressing key scientific challenges for each of the devices, e.g., ionic transport across interfaces in solid state batteries and SOFCs membranes, increased efficiency in PVs, and methods for self-assembly in thermoelectrics. WP6 directly attacks the challenges associated with the integration of new materials into working devices and optimising their performance. An overarching theme is to pioneer new metrologies to characterise interfaces under operando conditions, including NMR, magnetic resonance imaging and transmission electron microscopy and pulsed isotope exchange methods. Integration of different devices is enabled by the development of a bespoke tool to enable the controlled deposition and integration of a wide range of low-temperature battery, SOFC, solar cell and thermoelectric materials in a common, inert processing environment. The scope of the work and academic/industrial participation with be expanded via three flexible funding calls, with topics including emerging new research areas, industry driven/partnered, and materials integration research. We will provide UK academia and businesses with a forum for knowledge exchange and collaboration, coupled with access to world-class facilities to accelerate new concepts to commercial reality. The development of strong modes of collaborative working and networking between individual EPSRC Centres for Advanced Materials for Energy Generation and Transmission, together with our University partners, industry and stakeholder groups, is an important goal. A series of high visibility symposia and workshops involving all the stakeholders, to identify synergies between the EPSRC Advanced Materials Centres and key industry challenges, to disseminate research findings to the community and to train users on CAM-IES facilities, is a key strategy to identify and engage users and disseminate results. We will provide support for students and PDRAs from outside the 4 original partner universities to attend these events and use CAM-IES equipment. Strategic advice to Centre will be provided by a broad and highly experienced, international advisory board from industry and academia.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.