Powered by OpenAIRE graph
Found an issue? Give us feedback

ALE HEAVYLIFT (R&D) BV

Country: Netherlands

ALE HEAVYLIFT (R&D) BV

2 Projects, page 1 of 1
  • Funder: European Commission Project Code: 691919
    Overall Budget: 17,107,300 EURFunder Contribution: 11,182,000 EUR

    In ELICAN, a strong team of complementary European companies with worldwide leading presence in the Wind Energy industry join forces to provide the market with a disruptive high-capacity and cost-reducing integrated substructure system for deep offshore wind energy. The technology is exceptionally fitted to meet the technical and logistical challenges of the sector as it moves into deeper locations with larger turbines, while allowing for drastic cost reduction. This project will design, build, certify and fully demonstrate in operative environment a deep water substructure prototype supporting Adwen’s 5MW offshore wind turbine, the be installed in the Southeast coast of Las Palmas (Canary Islands). It will become the first bottom-fixed offshore wind turbine in all of Southern Europe and the first one worldwide to be installed with no need of heavy-lift vessels. The revolutionary substructure consists in an integrated self-installing precast concrete telescopic tower and foundation that will allow for crane-free offshore installation of the complete substructure and wind turbine, thus overcoming the constraints imposed by the dependence on heavy-lift vessels. It will allow for a full inshore preassembly of the complete system, which is key to generate a highly industrialized low-cost manufacturing process with fast production rates and optimized risk control. The main benefits to be provided by this ground-breaking technology are: • Significant cost reduction (>35%) compared with current solutions. • Direct scalability in terms of turbine size, water depth, infrastructure and installation means. • Complete independence of heavy-lift vessels • Excellently suited for fast industrialized construction. • Robust and durable concrete substructure for reduced OPEX costs and improved asset integrity. • Suitable for most soil conditions, including rocky seabeds. • Enhanced environmental friendliness regarding both impact on sea life and carbon footprint.

    more_vert
  • Funder: European Commission Project Code: 654634
    Overall Budget: 3,498,530 EURFunder Contribution: 3,498,530 EUR

    TELWIND unites a strong complimentary team of renowned European companies and research institutions, which join forces to develop a revolutionary integrated floating offshore system. The concept, which has already undergone trial tank testing with overly positive results, shall enable a radical cost reduction both in terms of material usage and required means and operations. The system has been conceived in a holistic approach to the overall substructure, tower and turbine, generating ground breaking synergies between the integrated elements to specifically address the particular requirements of offshore wind, focusing in the capacity for low-cost industrialization in the inshore construction and offshore installation processes. The Telwind concept integrates a novel floating substructure and a pioneer self-erecting telescopic tower. The former provides all the performance advantages of a spar-buoy substructure while allowing for qualitatively lower material usage, the latter enables a full onshore preassembly of the overall system and a highly beneficial reduction of offshore works and auxiliary means. Together they overcome the limitations imposed by the available inshore infrastructure and offshore heavylift vessels, and thus generate a fully scalable system, perfectly fitted for the effective integration of the next generation of extremely large (10MW+) offshore wind turbines which are key to enhance the reduction of the Levelised Cost of Energy (LCOE). The system will also profit from the proven structural efficiency and economy of precast concrete, a material particularly well suited for low-cost industrialized production of repetitive units. Robust, reliable and virtually maintenance-free marine constructions result, reducing OPEX costs, greatly increasing durability and fatigue tolerance, and setting the ground for extended service life of the infrastructure, which could further magnify the system’s capacity for drastic reduction of the LCOE.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.