Powered by OpenAIRE graph
Found an issue? Give us feedback

Nanjing University

Nanjing University

19 Projects, page 1 of 4
  • Funder: UK Research and Innovation Project Code: NE/R010129/1
    Funder Contribution: 649,014 GBP

    Biological evolution is commonly viewed as a gradual and largely predictable journey from simple, single-celled bacterial ancestors, to ever larger and more complex life forms. Similarly, the evolution of Earth's atmosphere and oceans (which is considered to play a crucial role in biological evolution) is generally viewed as a gradual, albeit stepwise, trajectory towards greater oxygenation, with each rise occurring in tandem with, and facilitating progressive increases in, biological size and complexity. This paradigm of a monotonous progression towards modern conditions and the implied linkage between key evolutionary steps and oxygenation has recently been challenged. However, relevant data to resolve the issue are scarce and ambiguous. Geochemical estimates of atmospheric oxygen levels during the Proterozoic range widely, and our understanding of ocean oxygenation levels have complicated this picture further, indicating a dynamic environment fluctuating between abundant oxygen levels and no oxygen (anoxic). As such, links between Earth surface oxygenation and early biological evolution have been particularly difficult to unravel. Recently discovered, large eukaryote fossils from North China are particularly difficult to understand in the light of current understanding of Earth's atmospheric evolution which suggests exceedingly low oxygen levels at this time of diversification. Studies of early Earth environments have been severely hampered by the poor quality of geological samples (burial and subsequent exposure at the Earth's surface can destroy the primary geochemistry of rocks). With this in mind, we propose a multidisciplinary study of superbly preserved mid-Proterozoic samples from the North China craton, largely obtained by drilling, to reconstruct the oxygenation history of the ocean and to investigate how nutrients in the ocean interact with this history. This will be combined with new paleontological data to demonstrate how nutrients and redox constrained the early evolution of eukaryotes, the ancestral lineage of all extant animals. By specifically targeting the best quality samples that can be obtained across this crucial interval in the history of life on Earth, the research outlined in this proposal will shed fundamental new insight into the enigmatic mid-Proterozoic Earth system, including why it took so long for large, complex multicellular eukaryotes to dominate marine ecosystems. In this project we propose an integrated approach to test assumed linkages between Earth surface conditions and biological evolution during the mid-Proterozoic (~1.7-0.9 Ga). A combination of fieldwork and targeted shallow drilling of demonstrably preserved rocks on the North China craton will provide the basis for a detailed study of a crucial interval of early biological diversification. In particular, we will utilize key redox and novel nutrient tracers, organic-walled fossils and molecular biomarkers. Reconstruction of early marine ecosystems and their environment will allow us to test highly topical hypotheses relating to the delayed evolution of biological complexity on Earth, including the potential roles of nutrient availability and Earth surface oxygenation.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/I008837/1
    Funder Contribution: 328,671 GBP

    The dust cycle is a fundamental component of climate, but remains one of the least understood aspects of the Earth-system. Dust in the atmosphere affects oceanic productivity and atmospheric carbon dioxide levels, cloud formation and the amount of radiation absorbed or reflected by the atmosphere, all driving climatic change. However, how dust production and emission is controlled by environmental change in the past is poorly understood, preventing quantification of its effects on climate, fact acknowledged in the recent IPCC 2007 report. This project addresses this gap by attempting to pinpoint the precise sources of the world's largest and longest active dust sink, the Chinese Loess Plateau. The Chinese Loess Plateau contains a 22 million year archive of loess (deposited dust) deposition, covering one of the most significant time periods for understanding the Earth's history. Chinese loess has made crucial contributions to understanding past changes in the Asian monsoon and dust storms and is one of the most valuable climate archives available. However, its interpretation relies on detailed constraint of the precise sources of this dust, and the pathways by which it reaches the Loess Plateau. Unfortunately, despite investigation using the geochemical properties of bulk samples there are multiple competing hypotheses over 1) the precise loess source regions, 2) the environmental controls on dust production, 3) whether sources shift through time, 4) the atmospheric mechanisms are for dust transport and indeed 5) whether the oldest part of the record (8-22 Ma) is indeed wind-blown at all. These disagreements severely limit our understanding of the very origin of these deposits, preventing us from constraining the past atmospheric, tectonic and oceanographic conditions responsible for the emission and transport of dust and undermining the use of certain climate proxies in loess. In turn this restricts our understanding of the dominant environmental processes operating in China in the past, and the origin of the current atmospheric circulation systems. Key to overcoming this gap is to properly constrain the sources of loess. Our pilot work has demonstrated that widely applied bulk sediment geochemical analysis of sediment from loess and source regions will mask the detail of the multiple sources of loess dust. Only individual grains of certain heavy minerals (> 2.8 specific gravity) can be source diagnostic as each grain will have one source and certain of its geochemical and geochronological characteristics may be diagnostic of this. Thus analysis of multiple single grains of zircons and other heavy minerals isolated from loess and adjacent desert deposits will be undertaken using a multi-proxy single-grain geochemical approach to maximise the likelihood of success. Until our pilot work this has not been conducted on Chinese loess previously. Samples for these analyses will be taken from multiple, typical loess sequences in China, allowing determination of source variance through time and space. Sampling will concentrate on key intervals, such as the uplift of Tibet, the onset of Ice Age glaciation and the enhanced intensity of glaciation in more recent times. The results will allow us to test between conflicting hypotheses of loess dust source and transport, enabling constraint of the fundamental controls on dust emission and the atmospheric mechanisms involved in their transport. In turn and through comparison with independent records, this will allow us to assess the effect of global and regional climatic, tectonic and oceanographic changes on dust. This is currently a poorly understood yet critical component of the Earth-system. Finally, the results will test the validity of widely used sedimentary proxies such as mass accumulation rates and grain size in reconstructing past environmental changes from loess.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/N007514/1
    Funder Contribution: 303,516 GBP

    This research project focuses on sustainable intensification of agriculture in highly productive peri-urban farming areas in China. This agricultural base is essential to meet China's increasing food production demands but is under pressure from urban pollution inputs, soil and water pollution from farming practices - particularly extensive use of mineral fertilisers and pesticides, and urbanisation. We will quantify the benefits and risks of a substantial step-increase in organic fertiliser application as a means to reduce the use of mineral fertiliser. Our approach is to study the role of soil as a central control point in Earth's Critical Zone (CZ), the thin outer layer of our planet that determines most life-sustaining resources. Our Critical Zone Observatory (CZO) site is the Zhangxi catchment within Ningbo city, a pilot city of rapid urbanization in the Yangtze delta. We will combine controlled manipulation experiments of increased organic fertiliser loading with determination of soil process rates and flux determinations for water, nutrients, contaminants, and greenhouse gas (GHG) emissions across the flux boundaries where the soil profile interfaces with and influences the wider CZ; surface waters and aquifers, vegetation, and the atmosphere. To guide the research design we have identified 3 detailed scientific hypotheses. 1. Replacement of mineral fertiliser use by organic fertiliser will shift the soil food web for N/C cycling from one dominated by bacterial heterotrophic decomposition of soil organic matter (SOM) and bacterial nitrification to produce plant available N and loss of soluble nitrate to drainage waters, to one dominated by heterotrophic fungal decomposition of complex, more persistent forms of OM to low molecular weight organic N forms that are plant available. This change in N source will increase SOM content and improve soil structure through soil aggregate formation. 2. Increased use of organic fertiliser from pig slurry (PS), and wastewater sludge (WS) will lead to increased environmental occurrence of emerging contaminants, particularly antibiotics and growth hormones. Environmental transport, fate and exposure must be determined to quantify development of microbial antibiotic resistance and other environmental and food safety risk, and develop soil and water management practices for risk mitigation. 3. Decreased use of mineral fertilisers and increased use of organic fertilisers will reduce environmental and food safety risks from metals contamination; this is due to lower metal mobility and bioavailability from redox transformations, reduced soil acidification and increased metal complexation on soil organic matter. Our programme of research will conduct the manipulation experiments across nested scales of observation with idealised laboratory microcosm systems, controlled manipulation experiments in field mesocosms, pilot testing of grass buffer strips to reduce the transport of emerging contaminants from the soil to surface waters, and field (~1ha) manipulation experiments. Mechanistic soil process models will be tested, further developed to test the specific hypotheses, and applied to quantify process rates that mediate the landscape scale CZ fluxes as a measure of ecosystem service flows. GIS modelling methods include data from characterisation of a subset of soil properties and process rates at a wider set of locations in the catchment, together with catchment surface water and groundwater monitoring for water and solute flux balances. The GIS model that is developed will identify the geospatial variation in nutrient, contaminant, and GHG sources and sinks and will be used to quantify fluxes at the catchment scale. These results will determine the current baseline of ecosystem service flows and will evaluate scenarios for how these measures of ecosystem services will change with a transition to widespread of organic fertilisers through the farming area of the catchment.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/S006680/1
    Funder Contribution: 270,292 GBP

    EXHALE will conduct targeted research following on from major findings during the APHH-China phase-1 AIRPRO field campaigns which found that pollutant chemistry is more complex than expected, particularly during the so-called haze events when loadings of particulate matter (PM) were high. Large concentrations of the hydroxyl radical (OH) were observed in both summer and winter, including during haze events, which was unexpected. OH controls the atmospheric lifetime of most trace gases and the formation of secondary pollutants such as ozone and secondary organic aerosols (SOA), and HONO was found to be the dominant OH precursor in Beijing. However, detailed models were unable to fully account for HONO, OH and other radicals, especially during the polluted haze events. EXHALE will quantify heterogeneous sources of nitrous acid (HONO) and radicals at aerosol surfaces using particulate matter (PM) collected on filters from Beijing ambient aerosol by our Chinese collaborators at Peking University (PKU), including during haze events. The filter samples will be analysed off-line by a variety of analytical methods to determine the composition of the PM, which is known to be highly complex. The filter samples will be sent to Leeds, and the extract from these filters will be used to generate aerosols in the laboratory, and the HONO and radical production rates determined using an illuminated aerosol flow-tube apparatus equipped with a very sensitive detector for HONO, HO2 or RO2 radicals. The production rates will be determined as a function of atmospheric variables and parameterised, and used as input into a box model, constrained to detailed measurements made during the AIRPRO campaigns. The box model will use the detailed Master Chemical Mechanism, and will evaluate the impact of the heterogeneous production processes on radical levels and rates of ozone production, a secondary pollutant harmful to health. The newly determined production rates will also be used in large-scale regional models, initially for Beijing but then for other Chinese mega-cities, to quantify the impact of heterogeneous production towards regional episodes of ozone and secondary organic aerosol. We will use publically available data from the Chinese air quality monitoring network (>1000 locations), and together with additional data from our Chinese partners, will use regional simulations to scale up implications of these sources, and translate the results across China. EXHALE consists of a UK-Chinese consortium with complementary expertise and capabilities in both experimental and modelling aspects of atmospheric science. At Leeds there is experimental expertise in the ultra-sensitive measurement of radicals and HONO and aerosol uptake/production of reactive species, and expertise in modelling of gas-phase and aerosol chemical and physical processes on a range of scales using box, regional and global models. At PKU there is expertise in sampling of ambient aerosol and detailed off-line analysis of the composition of Beijing aerosol. The project benefits from collaboration with other Chinese scientists working on urban air pollution in other mega-cities. Towards the end of the EXHALE project, and together with our collaborators at PKU, we will organise a 2-day stakeholder workshop in Beijing to discuss the results from EXHALE and the wider implications for air pollution and its control. In conjunction with our project partners at Shanghai Jiao Tong University we will organise a summer school in 2020 in Shanghai, primarily aimed at PhD students and early career researchers, and to be taught by the EXHALE investigators and our Chinese collaborators and project partners.

    more_vert
  • Funder: UK Research and Innovation Project Code: AH/K003577/1
    Funder Contribution: 36,091 GBP

    Network partners The project is a cross sector partnership between universities and the theatre area of the cultural industries. The core institutions will be represented on the steering committee: the Universities of Leeds, Newcastle, Zhejiang, Nanjing, California Davis, British Columbia, and Queensland with the Royal Shakespeare Company, West Yorkshire Playhouse and Sichuan Peoples' Art Theatre. These institutions are leaders in their fields with international profiles which will be further enhanced by this proposed network. The RSC's first production of a Chinese play 'The Orphan of Zhao' (a 13th century classical play based on historical events during 600-500BC yet with period transcending themes) provides a good topic for the network to examine how China and Chinese culture are presented in intracultural, intercultural and transcultural theatre productions, and how languages and translations play a key role in stage productions to form or to alter people's perception of others' cultures. Academic outputs in the funding period (01/2013 - 08/2014) We will carry out conventional and practice-led research (University of Leeds is an international leader for both), workshops for the future plan of the repository of stage productions, development of curricula on translating Chinese drama, and practical work involving professionals and general public. Through these activities, the network attempts to seek answers to the following research questions and related issues, allowing for further definition, clarification or alteration during the course of the project. Primary question and related issues How is China constructed and projected through intra/inter/trans-cultural stage productions in Chinese (including different dialects) and in English, and how can research into languages and translations contribute to understanding of the perceptions of China? To answer the overarching question, the following will be addressed through proposed activities: 1. Why has the ancient play 'The Orphan' (first written in the 13th century based on historical events during 600-500BC) fascinated so many artists? What images do various Chinese productions (in the styles of indigenous song-dance theatre, Western-inspired spoken drama and Western opera) and now that of the RSC's attempt to create? How can a classical Chinese play be made relevant to today's British/ Chinese youth and how do we tackle language, culture and generation barriers? 2. Is 'translation' involved in theatre even within China's own territories? Does 'translation' only mean 'verbal rendition' and what happens when a written text transfers to performance and travels from one regional genre to another in different dialects and stage vocabulary? What levels of translation are involved when an English poet adapts 'The Orphan' to be directed and performed by British artists? How does the intracultural encounter contribute to the intercultural work? 3. How does theatre shape perception of China and Chinese culture through the languages and translations it involves? 4. What skills gaps exist in the UK, and what strategies exist to fill those gaps i.e. to help students build the capacity to tackle complicated language and culture issues in translations? The introduction of a new module 'Translating Chinese Drama' at Newcastle University will serve as a case study. 5. How can intercultural theatres develop, based on a genuine dialogue in the highly complex global cultural landscape, engaging issues from broader perspectives involved in languages and translations? 6. How can digital technology be used to share knowledge and expertise on Chinese theatre and to enrich international and intercultural engagement?

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.