Powered by OpenAIRE graph
Found an issue? Give us feedback

Vienna University of Technology

Vienna University of Technology

19 Projects, page 1 of 4
  • Funder: UK Research and Innovation Project Code: EP/W020254/1
    Funder Contribution: 346,227 GBP

    Mid-infrared (mid-IR) absorption spectroscopy is a well-known and versatile analytical technique for uniquely identifying and measuring the concentrations of gases, chemicals, and biological molecules by measuring which wavelengths of mid-IR light an analyte absorbs. Existing mid-IR absorption sensors are however either bulky and expensive (e.g. benchtop spectrometers), or have poor sensitivity and specificity (e.g. LED based sensors). Miniaturising such sensors could be transformative for diverse medical, industrial, and environmental sensing scenarios. High performance, low cost, and small spectroscopic sensors could be created using mid-IR optical circuits on silicon chips. These chips would ideally combine all of the required optical functions of the sensor (i.e. light source, waveguides for routing light, interaction between the light and the analyte, and light detection), and could be fabricated at low cost in high volumes, thanks to existing silicon manufacturing infrastructure that has been developed for electronics and for near-infrared optical communications. The last few years have seen rapid development of many of the components that are needed to create these sensor systems: silicon photonic waveguides that can transmit light with low loss at almost any mid-IR wavelength have been developed, while lasers emitting high powers in the mid-IR are now readily available and have been successfully integrated with silicon waveguides. However, there remains a crippling lack of practical photodetector technologies; those that have already been integrated wilth optical circuits on silicon chips are either expensive to manufacture, are impractical because they have to be cooled to cryogenic temperatures, or do not work at all required wavelengths. This project will develop new waveguide integrated thermal photodetectors, which work by converting the incoming light into a temperature change that can be measured with an electronic circuit. They will be able to operate at room temperature at any mid-IR wavelength, and will be manufactured using low cost techniques. This project will also demonstrate that sensors employing these photodetectors can reach the sensitivities required for clinical and industrial uses, by using them to measure low concentrations of artificial sweeteners in soft drinks - an industrially important example application. These detectors will potentially transform mid-infrared sensor systems from an academic curiosity into a commercially viable technology.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P006078/1
    Funder Contribution: 333,594 GBP

    Some of the most fundamental and perhaps bizarre processes expected to occur in the vicinity of black holes are out of observational reach. To address this issue we utilise analogue systems where we study fluctuations on a background flow that in the experiment reproduces an effective black hole. In the literature this line of research is referred to as analogue models for gravity, or simply analogue gravity. Analogue models provide not only a theoretical but also an experimental framework in which to verify predictions of classical and quantum fields exposed to 'extreme' spacetime geometries, such as rapidly rotating black holes. This project brings together two world-wide recognised experts in the field of analogue gravity with the aim of pushing the field in a new direction: we propose ground-breaking studies to mimic some of the bizarre processes occurring in the vicinity of rotating black holes from general relativity and rotating fluids in both water and optical systems. In particular, we will investigate both theoretically and experimentally the interaction between an input wave and a rotating black hole spacetime geometry, here recreated by the rotating fluid. This allows us to mimic a scattering process associated to rotating black hoes called superradiant scattering. From a historical viewpoint this kind of radiation is the precursor to Hawking radiation. More precisely, black hole superradiance is the scattering of waves from a rotating black hole: if the incoming wave also possesses a small amount of angular momentum, it will be reflected with an increased amplitude, i.e. it is amplified at the expense of the black hole that thus loses some of its rotational energy. It has also been pointed out that the same physics may take place in very different systems, for example light incident on a rotating metallic (or absorbing) cylinder may also be amplified upon reflection. Yet, no-one has ever attempted to experimentally investigate the underlying physics that extend beyond general relativity and are relevant to a variety of hydrodynamical and rotating systems. We aim to provide the first ever experimental evidence of this intriguing and fundamental amplification mechanism in two different hydrodynamical systems. The first is a water spout, controlled so that the correct boundary conditions are obtained and optimised for observing BH-SS. The second is a less conventional fluid that is made out of light. Light propagating in a special medium can behave as a fluid or even a superfluid. By building upon highly developed photonic technologies e.g. for the control and measurements of laser beam wavefronts, we will implement very precisely tailored and characterised experiments. One of the unique aspects of this project is the marriage between two very different lab-based systems, one using water the other using light, to tackle an outstanding problem in physics that is of relevance to astrophysics, hydrodynamic and optical systems.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P006078/2
    Funder Contribution: 225,535 GBP

    Some of the most fundamental and perhaps bizarre processes expected to occur in the vicinity of black holes are out of observational reach. To address this issue we utilise analogue systems where we study fluctuations on a background flow that in the experiment reproduces an effective black hole. In the literature this line of research is referred to as analogue models for gravity, or simply analogue gravity. Analogue models provide not only a theoretical but also an experimental framework in which to verify predictions of classical and quantum fields exposed to 'extreme' spacetime geometries, such as rapidly rotating black holes. This project brings together two world-wide recognised experts in the field of analogue gravity with the aim of pushing the field in a new direction: we propose ground-breaking studies to mimic some of the bizarre processes occurring in the vicinity of rotating black holes from general relativity and rotating fluids in both water and optical systems. In particular, we will investigate both theoretically and experimentally the interaction between an input wave and a rotating black hole spacetime geometry, here recreated by the rotating fluid. This allows us to mimic a scattering process associated to rotating black hoes called superradiant scattering. From a historical viewpoint this kind of radiation is the precursor to Hawking radiation. More precisely, black hole superradiance is the scattering of waves from a rotating black hole: if the incoming wave also possesses a small amount of angular momentum, it will be reflected with an increased amplitude, i.e. it is amplified at the expense of the black hole that thus loses some of its rotational energy. It has also been pointed out that the same physics may take place in very different systems, for example light incident on a rotating metallic (or absorbing) cylinder may also be amplified upon reflection. Yet, no-one has ever attempted to experimentally investigate the underlying physics that extend beyond general relativity and are relevant to a variety of hydrodynamical and rotating systems. We aim to provide the first ever experimental evidence of this intriguing and fundamental amplification mechanism in two different hydrodynamical systems. The first is a water spout, controlled so that the correct boundary conditions are obtained and optimised for observing BH-SS. The second is a less conventional fluid that is made out of light. Light propagating in a special medium can behave as a fluid or even a superfluid. By building upon highly developed photonic technologies e.g. for the control and measurements of laser beam wavefronts, we will implement very precisely tailored and characterised experiments. One of the unique aspects of this project is the marriage between two very different lab-based systems, one using water the other using light, to tackle an outstanding problem in physics that is of relevance to astrophysics, hydrodynamic and optical systems.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S023577/1
    Funder Contribution: 6,718,390 GBP

    On a daily basis huge amounts of geospatial data and information that record location is created across a wide range of environmental, engineered and social systems. Globally approximately 2 quintillion bytes of data is generated daily which is location based. The economic benefits of geospatial data and information have been widely recognised, with the global geospatial industry predicted to be worth $500bn by 2020. In the UK the potential benefits of 'opening' up geospatial data is estimated by the government to be worth an additional £11bn annually to the economy and led to the announcement of a £80m Geospatial Commission. However, if the full economic benefits of the geospatial data revolution are to be realised, a new generation of geospatial engineers, scientists and practitioners are required who have the knowledge, technical skills and innovation to transform our understanding of the ever increasingly complex world we inhabit, to deliver highly paid jobs and economic prosperity, coupled with benefits to society. To seize this opportunity, the Centre for Doctoral Training in Geospatial Systems will deliver technically skilled doctoral graduates equipped with an industry focus, to work across a diverse range of applications including infrastructure systems, smart cities, urban-infrastructure resilience, energy systems, spatial mobility, structural monitoring, spatial planning, public health and social inclusion. Doctoral graduates will be trained in five core integrated geospatial themes: Spatial data capture and interpretation: modern spatial data capture and monitoring approaches, including Earth observation satellite image data, UAVs and drone data, and spatial sensor networks; spatial data informs us on the current status and changes taking place in different environments (e.g., river catchments and cities). Statistical and mathematical methods: innovative mathematical approaches and statistical techniques, such as predictive analytics, required to analyse and interpret huge volumes of geospatial data; these allow us to recognise and quantify within large volumes of data important locations and relationships. Big Data spatial analytics: cutting edge computational skills required for geospatial data analysis and modelling, including databases, cloud computing, pattern recognition and machine learning; modern computing approaches are the only way that vast volumes of location data can be analysed. Spatial modelling and simulation: to design and implement geospatial simulation models for predictive purposes; predictive spatial models allow us to understand where and when investment, interventions and actions are required in the future. Visualisation and decision support: will train students in modern methods of spatial data visualisation such as virtual and augmented reality, and develop the skills on how to deliver and present the outputs of geospatial data analysis and modelling; skills required to ensure that objective decisions and choices are made using geospatial data and information. The advanced training received by students will be employed within interdisciplinary PhD research projects co-designed with 40 partners ranging from government agencies, international engineering consultants, infrastructure operators and utility companies, and geospatial technology companies; organisations that are ideally positioned to leverage of the Big Data, Cloud Computing, Artificial Intelligence and Internet of Things (IoT) technologies that are predicted to be the key to "accelerating geospatial industry growth" into the future. Throughout their training and research, students will benefit from cohort-based activities focused on group-working and industry interaction around innovation and entrepreneurship to ensure that our outstanding researchers are able to deliver innovation for economic prosperity across the spectrum of the geospatial industry and applied user sectors.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/H003347/1
    Funder Contribution: 81,141 GBP

    Characterising and monitoring terrestrial or land surface features like forests, deserts and cities are fundamental and continuing goals of Earth Observation (EO). EO imagery and related technology is essential to understand environmental processes like carbon capture and manage environmental resources like tropical forests, particularly over large areas or the entire globe. This measurement or observation of some property of the land surface is central to a wide range of scientific investigations and industrial operations, involving individuals and organisations from many different backgrounds and disciplines. However, this process of observing the land provides a unifying theme for these investigations, and in practice there is much consistency in the instruments used for observation and the techniques used to map and model the environmental subject. There is therefore great potential benefit in exchanging technological knowledge and experience among the many and diverse members of the terrestrial EO community. The aim of the cluster is to exchange knowledge and facilitate understanding, development and uptake of state-of-the-art technology used in EO of the land surface. This will include consideration of the full range of terrestrial EO operation, from platform and sensor development, to image retrieval and analysis, environmental modelling and thematic application. The 'terrestrial' focus is deliberately broad to ensure wide relevance across and engagement from the whole community, involving both research and industry. However, to guarantee specific technological advancement and achievement, priority areas or themes will be identified for detailed investigation. While these themes will be determined ultimately through consultation with the EO community, prospective themes include the operation of autonomous aerial vehicles in land observation, development of novel land classification approaches and application of EO to threatened environments such as peatlands. The consultative process ensures the cluster's activities are guided by and effectively represent the community's interests. The themes will operate in close communication with each other to ensure cross-fertilisation of knowledge and contribution to overall cluster goals. Cluster activities will include the development of various networking mechanisms to bring together all parties interested in terrestrial EO technology. Central to this will be an interactive website, where news and updates will be posted regularly and participants can share resources. Various cluster events will be held, including scientific workshops and commercial demonstrations in the first year, and a major conference and gadget show in the second year to be held at the National Space Centre. Cluster activities will yield a range of scientific, technical and general interest publications. Theme events will be supported with workbooks and abstract booklets, and theme coordinators will be encouraged to organise journal special issues. An edited volume will also be published on Future Terrestrial Earth Observation Technology to outline state-of-the-art technology and signpost future development. To guarantee benefits across the whole terrestrial EO community, the cluster will be organised by a consortium representing a wide range of interests. At the heart of this consortium are three umbrella bodies covering research and higher education (the Remote Sensing and Photogrammetry Society), industry (the British Association of Remote Sensing Companies) and existing EO activities at the Natural Environment Research Council (the National Centre for Earth Observation). Together, these bodies represent hundreds of organisations and thousands of researchers, developers and users of EO technology. Researchers will benefit through the development of strategic collaborations, NERC will benefit through guidance on technology policy and commercial organisations will benefit through user feedback.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.