Powered by OpenAIRE graph
Found an issue? Give us feedback

PV3 Technologies Ltd

Country: United Kingdom

PV3 Technologies Ltd

16 Projects, page 1 of 4
  • Funder: UK Research and Innovation Project Code: EP/P031323/1
    Funder Contribution: 101,060 GBP

    This project aims to create transition metal perovskite/Nitrogen-doped Carbon electrospun nanofibres as alternative cost-efficient bifunctional electrocatalysts to replace noble metals for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in energy conversion (PEM fuel cells and water electrolysers) and storage (metal-air batteries) devices. At the same time, I will develop new in situ studies that will allow a deeper understanding of the structure-property relationships allowing for further optimisation. The search for green alternative sources of energy is of great importance for our current society. In order to battle increasing greenhouse gases and global warming created by the use of fossil fuels, and to meet the UK's 2050 climate change targets, we need to develop new technologies that allow researchers to tackle this problem. Some of these alternatives include fuel cells, solar cells, batteries, supercapacitors and water electrolysers. OER and ORR are key processes taking place in most of these technologies and will be the focus of this project. The high cost of the noble metal catalysts employed in energy conversion and storage devices is one of the major drawbacks to their full development and exploitation. There are many reports new materials that can overcome state-of-the-art limitations at an acceptable cost. However, not much research has been done to understand the effect of nanostructuring, hybridisation between various electrochemically active materials and understanding the structure-property relationships to allow an improved performance. In this project, I will design hybrid materials combining already known transition metal perovskite electrocatalysts with nitrogen-doped carbons electrocatalysts using the electrospinning technique. These new hybrid nanostructures will be characterised using state-of-the-art techniques. I will also design in operando studies combining structural and property coupled measurements. The electrocatalytic activity of perovskites is thought to be due to the presence of oxygen vacancies in their structure. By combining Raman spectroscopy and OER and ORR measurements, we will be able to monitor the changes in the oxygen vacancies of the perovskites (detected by Raman spectroscopy) as their electrochemical performance is evaluated. A similar approach will be developed using X-ray computed tomography, which will provide invaluable information about the complex structures and interactions involved in the catalytic process at the different structural levels of organisation and integrated within real devices. This will be correlated with the electrocatalytic activity of N-doped carbon materials studied by X-Ray Adsorption studies and the synergy between these two electrocatalysts understood. This will lead to a better understanding of the parameters influencing the activity of these materials in relation to their structure and also to the device environment and will facilitate a better electrode engineering. This project will be conducted at the Materials Research Institute (MRI), Queen Mary University of London (QMUL). The MRI brings together a range of expertise with different schools including Engineering and Materials, Physics and Astronomy, Biological and Chemical Sciences, and Dentistry, providing a platform to support interdisciplinary materials research. I maintain a close collaboration with the Electrochemical Innovation Lab (Chemical Engineering Department, UCL) which will provide access to X-ray computed tomography and industrial links to test the new materials at scaled-up dimensions. Coupled structure-property studies will be carried out in collaboration with Dr. Ozlem Sel and Dr. Ivan Lucas, from Laboratoire Interfaces Systemes Electrochimiques (LISE, CNRS, Paris, Sorbonne Universites). An internal collaboration with Prof. Titirici group at MRI-QMUL working on N-doped carbon electrocatalysis will complement these collaborations.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V011863/1
    Funder Contribution: 4,436,400 GBP

    The UK chemical sector has an annual turnover of over £32 billion with 99,000 direct jobs in 2016. The Centre's vision is to transform the UK's chemical industry into a fossil-independent, climate-positive and environmentally-friendly circular chemical economy. The overall novelty of our programme is the development of a sector-wide solution with deep circularity interventions, by creating a circular resources flow of olefin-the raw material for 70% of all organic chemical production. Our whole system approach will include key sectors of production, transportation/distribution, refinery/downstream, use and waste recycling, to reduce fossil reliance and improve productivity and sustainability of the whole process industry. The Centre will generate a cross-disciplinary platform combining synergistic innovations in science/engineering with social scientists to comprehend the whole system industrial symbiosis and market/policy/incentive design. The Core Research Programme is organised around three interconnected themes: (1) Key technologies to enable olefin production from alternative/recycling wastes streams and design more reusable chemicals via advanced catalytic processes; (2) Process integration, whole system analysis and value chain evaluation, and (3) Policy, society and finance. Through detailed process modelling, economic analysis and environmental assessment of technology solutions along the supply chain, accelerated understanding, opportunities and optimum solutions to achieve circularity of olefin-derived resources flow will be attained. These activities are embedded with stakeholders involving all affected groups, including local SMEs and downstream users, and will provide evidence and data for policymakers. The Centre will engage with users through social studies and organised events, and exploit consumer/business behavioural change related to chemical systems enabling a sustainable community and society with innovative technologies.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K035355/1
    Funder Contribution: 1,086,900 GBP

    Sustainable energy and climate change are areas of global societal concern, which is a recognised strategic priority area of the RCUK through their Energy Programme, managed by EPSRC. Catalysis, moreover, is the lynchpin of a large number of industrial processes, which are instrumental in maintaining global wealth and health, as well as playing a key role in developing processes that are both environmentally and economically sustainable. Despite the high thermodynamic stability of CO2, biological systems are capable of both activating the molecule and converting it into a range of organic molecules, all of which under moderate conditions. It is clear that, if we were able to emulate Nature and successfully convert CO2 into fuel or useful chemical intermediates without the need for extreme reaction conditions, the benefits would be enormous: One of the major gases responsible for climate change would become an important feedstock for the fuel, chemical and pharmaceutical industries! Iron-nickel sulfide membranes formed in the warm, alkaline springs on the Archaean ocean floor are increasingly considered to be the early catalysts for a series of chemical reactions leading to the emergence of life. The anaerobic production of acetate, formaldehyde, amino acids and the nucleic acid bases - the organic precursor molecules of life - are thought to have been catalyzed by small cubane (Fe,Ni)S clusters (for example Fe5NiS8), which are structurally similar to the surfaces of present day sulfide minerals such as greigite (Fe3S4) and mackinawite (FeS). Contemporary confirmation of the importance of sulfide clusters as catalysts is provided by a number of proteins essential to modern anaerobic life forms, such as ferredoxins, hydrogenases, carbon monoxide dehydrogenase (CODH) or acetylcoenzyme A synthetase (ACS), all of which retain cubane (Fe,Ni)S clusters with a greigite-like local structure, either as electron transfer sites or as active sites to metabolise volatiles such as H2, CO and CO2. In Phase 1 of the project, we have used a comprehensive combination of computational, synthetic and electrochemical expertise to mimic Nature and produce Fe-S and Ni-doped Fe-S nanoparticles to catalyse the conversion of CO2. Careful and sensitive testing of the computationally designed materials, prepared through novel synthesis routes, has shown unequivocably that the nanoparticles have the power to adsorb CO2 and reduce it to formic acid - a useful chemical intermediate. A particularly promising aspect is that the catalytic conversion of CO2 takes place at room pressure and temperature and at the sort of low voltages that could be obtained from solar energy, thus making it a sustainable process. Following this success, in Phase 2 of the project we aim to optimise the catalysts to improve yield and adapt for further product formation e.g. methanol, acetate and, eventually, dimethyl ether (DME) - all proven pre-cursors to fuels and fine chemicals - and to develop materials and processes that are robust enough to perform under 'real' conditions. Work in this area, in collaboration with a number of industrial partners, requires the dove-tailed interplay of experiment and computation to design, synthesise, characterise and catalytically test the potential transition metal-sulfide nano-catalysts, followed by scale-up of the nanoparticle production and evalulation in an industrial environment. The aim at the end of Phase 2 is to have created a commercially viable catalytic system for CO2 reduction, that performs in an industrially relevant environment.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T015233/1
    Funder Contribution: 387,989 GBP

    Electricity has emerged as a preferred energy vector for both conventional and renewable energy, thanks to its versatility and the vast existing electrical infrastructure. The electrification of the transport sector is a natural development to make use of energy from a wide variety of sources, and to reduce CO2 emissions and combat urban air pollution. The UK government plans to ban sale of all diesel and petrol cars and vans from 2040, following similar moves by France and Germany. Globally, the number of electric vehicles (EVs) is projected to rise from about 1 million in 2015 to 300 million in 2040. Achieving these goals requires dramatically improved performance and lowered costs of batteries for EV use. Lithium-ion batteries (LIBs) are promising, but enhanced materials for electrodes, especially the cathode, are needed to meet the power density and costs requirements for the next-generation EVs and energy storage systems. The research aims to generate fundamental knowledge and develop experimental and numerical tools for the controlled synthesis of high-performance cathode materials for LIBs with the inherent potential to be scaled to large throughput production. The materials will be based on layered, multi-element metal oxides (MOs) and carbon-metal oxides (CMOs). Among these, the nickel manganese cobalt oxides (NMCs) with various metal contents and surface features, which are favoured by mainstream automotive companies, will be the main target for the research, though the research and production techniques will be applicable for a large class of MOs and CMOs. Conventionally, MOs can be produced via solid state, sol-gel, and co-precipitation methods and combinations thereof, followed by high temperature annealing processes without or with carbon coating. Such multi-step synthesis routes are time- and energy-consuming, and require delicate control of the surrounding conditions. A promising alternative is flame spray pyrolysis (FSP), in which a precursor solution is atomised to produce a large number of evaporating droplets that are carried into a heated reactor or burned with a flame to form nanoparticles. FSP can offer a one-step, high throughput, easy-to-handle, scalable and continuous process, with a wide range of precursor solutions. It allows good control and, importantly, decoupling of the production process from the gas-phase chemistry process, creating the potential to produce designer materials at scale and low cost. The project is a collaboration between Cambridge University (Simone Hochgreb in flame synthesis; Adam Boies in nanoparticle synthesis; Michael De Volder in nanomaterial and batteries) and UCL (Kai Luo in modelling and simulation). A combined experimental and numerical study will be conducted to reveal the dynamic processes of and controlling mechanisms behind particle formation, growth and coating. At the microscopic level, the detailed transport and chemical reactions will be unravelled; at the mesoscopic level, factors affecting phase change and particle growth will be identified; and at the macroscopic level, the input parameters and time scales of key processes will be linked with quality of MO and CMO products. The experiments involve cutting-edge in-situ and ex-situ measurements to qualify and quantify the synthesis process. The modelling and simulation include advanced mesoscopic simulations of droplet dynamics and evaporation; and atomistic simulations of precursor pyrolysis, particle formation and growth. The fundamental insights gained, and tools and production techniques developed will be exploited for controlled flame synthesis of materials that are directly tied to battery performance metrics, in collaboration with four companies (CATL, Echion Tech, PV3 Technologies and STFET). These companies' activities cover the technology readiness levels (TRLs) from 2 to 9, providing valuable inputs to the research and multiple routes to exploitation of research outputs.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V011855/1
    Funder Contribution: 4,436,180 GBP

    The Circular Economy (CE) is a revolutionary alternative to a traditional linear, make-use-dispose economy. It is based on the central principle of maintaining continuous flows of resources at their highest value for the longest period and then recovering, cascading and regenerating products and materials at the end of each life cycle. Metals are ideal flows for a circular economy. With careful stewardship and good technology, metals mined from the Earth can be reused indefinitely. Technology metals (techmetals) are an essential, distinct, subset of specialist metals. Although they are used in much smaller quantities than industrial metals such as iron and aluminium, each techmetal has its own specific and special properties that give it essential functions in devices ranging from smart phones, batteries, wind turbines and solar cells to electric vehicles. Techmetals are thus essential enablers of a future circular, low carbon economy and demand for many is increasing rapidly. E.g., to meet the UK's 2050 ambition for offshore wind turbines will require 10 years' worth of global neodymium production. To replace all UK-based vehicles with electric vehicles would require 200% of cobalt and 75% of lithium currently produced globally each year. The UK is 100% reliant on imports of techmetals including from countries that represent geopolitical risks. Some techmetals are therefore called Critical Raw Materials (high economic importance and high risk of supply disruption). Only four of the 27 raw materials considered critical by the EU have an end-of-life recycling input rate higher than 10%. Our UKRI TechMet CE Centre brings together for the first time world-leading researchers to maximise opportunities around the provision of techmetals from primary and secondary sources, and lead materials stewardship, creating a National Techmetals Circular Economy Roadmap to accelerate us towards a circular economy. This will help the UK meet its Industrial Strategy Clean Growth agenda and its ambitious UK 2050 climate change targets with secure and environmentally-acceptable supplies of techmetals. There are many challenges to a future techmetal circular economy. With growing demand, new mining is needed and we must keep the environmental footprint of this primary production as low as possible. Materials stewardship of techmetals is difficult because their fate is often difficult to track. Most arrive in the UK 'hidden' in complex products from which they are difficult to recover. Collection is inefficient, consumers may not feel incentivised to recycle, and policy and legislative initiatives such as Extended Producer Responsibility focus on large volume metals rather than small quantity techmetals. There is a lack of end-to-end visibility and connection between different parts of techmetal value chains. The TechMet consortium brings together the Universities of Exeter, Birmingham, Leicester, Manchester and the British Geological Survey who are already working on how to improve the raw materials cycle, manufacture goods to be re-used and recycled, recycle complex goods such as batteries and use and re-use equipment for as long as possible before it needs recycling. One of our first tasks is to track the current flows of techmetals through the UK economy, which although fundamental, is poorly known. The Centre will conduct new interdisciplinary research on interventions to improve each stage in the cycle and join up the value chain - raw materials can be newly mined and recycled, and manufacturing technology can be linked directly to re-use and recycling. The environmental footprint of our techmetals will be evaluated. Business, regulatory and social experts will recommend how the UK can best put all these stages together to make a new techmetals circular economy and produce a strategy for its implementation.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.