Powered by OpenAIRE graph
Found an issue? Give us feedback

Det Norske Veritas BV DNV

Det Norske Veritas BV DNV

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/L016303/1
    Funder Contribution: 3,995,600 GBP

    This proposal is for a Doctoral Training Centre to provide a new generation of engineering leaders in Offshore & Marine Renewable Energy Structures. This is a unique opportunity for two internationally leading Universities to join together to provide an industrially-focussed centre of excellence in this pivotal subject area. The majority of informed and balanced views suggest approximately 180 TWh/year of offshore wind, ~300km of wave farms (19 TWh/year), 1,000 tidal stream turbines (6 TWh/year) and 3 small tidal range schemes (3 TWh/year) are desirable/achievable using David MacKay's UK DECC 2050 Pathways calculator. These together would represent 30% of predicted actual UK electricity demand. This would be a truly enormous renewable energy contribution to the UK electricity supply, given the predicted increase of electricity demand in the transport sector. The inclusion of onshore wind brings this figure closer to 38% of UK electricity by 2050. RenewablesUK predicts Britain has the opportunity to lead the world in developing the emerging marine energy industry with the sector having the potential to employ 10,000 people and generate revenues of nearly £4bn per year by 2020. The large scale development of offshore renewable energy (Wind, Wave and Tidal) represents one of the biggest opportunities for sustainable economic growth in the UK for a generation. The emerging offshore wind sector is however unlike the Oil & Gas industry in that structures are unmanned, fabricated in much larger volumes and the commercial reality is that the sector has to proactively take measures to further reduce CAPEX and OPEX. Support structures need to be structurally optimised and to avail of contemporary and emerging methodologies in structural integrity design and assessment. Current offshore design standards and practices are based on Offshore Oil & Gas experience which relates to unrepresentative target structural reliability, machine and structural loading characteristics and scaling issues particularly with respect to large diameter piled structural systems. To date Universities and the Industry have done a tremendous job to help device developers test and trial different concepts however the challenge now moves to the next stage to ensure these technologies can be manufactured in volume and deployed at the right cost including installation and maintenance over the full design life. This is a proposal to marry together Marine and Offshore Structures expertise with emerging large steel fabrication and welding/joining technologies to ensure graduates from the programme will have the prerequisite knowledge and experience of integrated structural systems to support the developing Offshore and Marine Renewable Energy sector. The Renewable Energy Marine Structures (REMS) Doctoral Centre CDT will embrace the full spectrum of Structural Analysis in the Marine Environment, Materials and Engineering Structural Integrity, Geotechnical Engineering, Foundation Design, Site Investigation, Soil-Structure Interaction, Inspection, Monitoring and NDT through to Environmental Impact and Quantitative Risk and Reliability Analysis so that the UK can lead the world-wide development of a new generation of marine structures and support systems for renewable energy. The Cranfield-Oxford partnership brings together an unrivalled team of internationally leading expertise in the design, manufacture, operation and maintenance of offshore structural systems and together with the industrial partnerships forged as part of this bid promises a truly world-leading centre in Marine Structures for the 21st Century.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N018869/1
    Funder Contribution: 721,298 GBP

    My proposed Fellowship will revolutionise the use of High Performance Computing (HPC) within The University of Sheffield by changing perceptions of how people utilise software and are trained and supported in writing code which scales to increasingly large computer systems. I will provide leadership by demonstrating the effectiveness of specific research software engineer roles, and by growing a team of research software engineer at The University of Sheffield in order to accommodate our expanding programme of research computing. I will achieve this by: 1) developing the FLAME and FLAME GPU software to facilitate and demonstrate the impact of Graphics Processing Unit (GPU) computing on the areas of complex systems simulation; 2) vastly extending the remit of GPUComputing@Sheffield to provide advanced training and research consultancy, and to embed specific software engineering skills for high-performance data parallel computing (with GPUs and Xeon Phis) across EPSRC-remit research areas at The University of Sheffield. My first activity will enable long-term support of the extensive use of FLAME and FLAME GPU for EPSRC, industry and EU-funded research projects. The computational science and engineering projects supported will include those as diverse as computational economics, bioinformatics and transport simulation. Additionally, my software will provide a platform for more fundamental computer science research into complexity science, graphics and visualisation, programming languages and compilers, and software engineering. My second activity will champion GPU computing within The University of Sheffield (and beyond to its collaborators and industrial partners). It will demonstrate how a specific area of research software engineering can be embedded into The University of Sheffield, and act as a model for further improvement in areas such as research software and data storage. I will change the way people develop and use research software by providing training to students and researchers who can then embed GPU software engineering skills across research domains. I will also aid researchers who work on computationally demanding research by providing software engineering consultancy in areas that can benefit from GPU acceleration, such as, mobile GPU computing for robotics, deep neural network simulation for machine learning (including speech, hearing and Natural language processing) and real time signal processing. The impact of my Fellowship will vastly expand the scale and quality of research computing at The University of Sheffield, embed skills within students and researchers (with long-term and wide-reaching results) and ensure energy-efficient use of HPC. This will promote the understanding and wider use of GPU computing within research, as well as transitioning researchers to larger regional and national HPC facilities. Ultimately my research software engineer fellowship will facilitate the delivery of excellent science whilst promoting the unique and important role of the Research Software Engineer.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R007519/1
    Funder Contribution: 811,975 GBP

    This project will enhance the design and development of floating offshore renewables, in particular offshore floating wind as commercially viable electricity infrastructure through a risk based approach allowing to build resilience against extreme events. The socio-economic challenge is the increasing energy need in emerging economies, such as China, which causes grave air pollution and CO2 emissions. The project work focusses on China, where heavy air pollution alone is estimated to have caused 2.2million premature deaths. Sustainable energy generation, thus replacing coal-fired power plants is one of the solutions to address this problem. In China specifically, the energy demand is at its highest along the industrialised and densely populated coastal regions. The challenge for a renewable energy supply is that the solar, wind and hydro resource are primarily located in the NW and SW of China and electricity transmission via the grid is already constrained. The Chinese government therefore has identified offshore wind energy as one of the primary energy resources with a potential of over 500GW of installed capacity, capable to produce up to 1,500 TWh of electricity per year, which would offset as many as 340 coal-fired power stations. Whilst initial installations in shallow waters near the coast have been made, over 1/3rd of the resource is located in deeper water (>40m) and will require floating installations. Offshore wind energy generation is currently more expensive than fossil fuels in China, and the risk of typhoon damage is high. The project has a fourfold approach: 1.Enhanced environmental modelling to accurately determine extreme loadings; 2. Assessment of novel, porous floating offshore wind structures and active damping mechanisms; 3. Enhanced numerical modelling techniques to efficiently calculate the complex coupled behaviour of floating wind turbines; 4. Risk based optimisation of devised designs and engineering implications. This combined approach is carried through distinguished scientific research expertise and leading industry partners in the field of offshore wind. To maximise the impact and benefits of this research the project places large emphasis on knowledge exchange activities, industry liaison and the establishment of cross-country research capacity to foster the global commercial realisation of offshore floating wind energy. The project is an interdisciplinary, cross-country collaboration with leading research Universities and industry partners. The academic expertise from the University of Exeter, the University of Edinburgh and University of Bath in the areas of Environmental assessment and modelling, Hydrodynamic design, Advanced computational modelling and risk based reliability engineering is matched with Dalian University of Technology and Zhejiang University as two of the leading Chinese research institutions in Ocean Engineering and Offshore Renewable Energy. Whilst the project carries out fundamental engineering research, strong industrial partnerships in both countries will facilitate industry advice and subsequent research uptake. The strong industrial UK support for this project through the ORE Catapult, DNV-GL, ITPE is matched with wider international support through EDF (France) and DSA (Canada), as well as the Chinese project partners MingYang Wind Power Ltd (3rd largest wind manufacturer in China), the National Ocean Technology Centre, NOTC, (institutional responsibility for marine spatial planning) and the 'Shanghai Investigation, Design & Research Institute', SIDRI (State-owned offshore wind project developer in China), demonstrates the timeliness and industrial relevance of the proposed research. All partners are committed to support the establishment of a long-lasting research base to develop resilient and cost effective offshore floating wind energy systems through collaborative research and innovation efforts, as well as capacity building and knowledge exchange.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.