Powered by OpenAIRE graph
Found an issue? Give us feedback

HW Communications Ltd

HW Communications Ltd

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/P025862/1
    Funder Contribution: 100,972 GBP

    With the emerging automated tasks in vehicle domain, the development of in-vehicle communications is increasingly important and subjected to new applications. Although both wired and wireless communications have been largely used for supporting diverse applications, most of in-vehicle applications with mission-critical nature, such as brake and engine controls, still prefer dedicated wired networks for reliable and secure transmission. One of the key challenges for data wiring is to facilitate the interconnectivity of increasing devices, e.g., sensors and electronic control units (ECU), effectively creating an in-vehicle network with low response latency, improved reliability and less complexity. The space requirement, weight, and installation costs for these wires can become significant, especially in future vehicles, which are highly sophisticated electronic systems. Given that vehicle components, sensors and ECUs are already connected to power wires, we apply vehicle power lines, which have recently been utilized for in-vehicle communications at the physical layer, to in-vehicle networks in this proposal. Taking mass air flow sensor as an example, it has one power wire and two signal wires, it will be efficient to use power line communications to replace the current signal wires, so 66% of wiring can be reduced. The advancement of vehicular power line communications (VPLC) can provide a very low complexity and free platform for in-vehicle networks, which is ideal for the increasing demand of applications in particular with future vehicles. However, the emerging VPLC is constrained by lack of protocol support, which pose significant challenges to deploy it in practise and ensure mission-critical communications. The following example illustrates the motivation of this proposal. An example for the motivation: A future vehicle is equipped with advanced driver assistance systems (ADAS) which can be connected with multiple sensors and ECUs to provide safety monitoring and control. An important demand of this scenario is that the systems, viewed as sources, should have stable connections with all ECUs, or network destinations. And it is also important that such in-vehicle networks must guarantee ultra-low latency for emerging control services since any seconds of delay may cause fatal accident. Therefore, an effective protocol design is crucial for VPLC to support future applications with mission-critical and high-bandwidth demands. The aim of the project is to improve the reliability of the network and guarantee stringent mission-critical requirements of in-vehicle applications in vehicular power line communications. We will partner with automotive specialists and construct the project to develop innovative and intelligent in-vehicle communication protocols. The solution this proposal is seeking is two fold. One is to pursue new design of intelligent access and congestion control solutions by fully exploring the practical and theoretical analysis, dynamic nature of channels/traffic patterns and self-learning techniques, which provides the theoretic aspect of the proposal. Then, the second step is from the practical aspect, where the proposed power line method shall be able to coexist and cooperate with existing state-of-the-art solutions, and its performance will be validated by practical in-vehicle traffic data. Obviously the two are inseparable not just because the ultimate goal of reliable communication for in-vehicle networks is only possible with the accomplishment of the both two parts, but also because the interaction between the two parts is the key for effective system design.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G037574/1
    Funder Contribution: 5,703,940 GBP

    The emergence of a global ubiquitous computing environment in which each of us routinely interacts with many thousands of interconnected computers embedded into the everyday world around us will transform the ways in which we work, travel, learn, entertain ourselves and socialise. Ubiquitous computing will be the engine that drives our future digital economy, stimulating new forms of digital business and transforming existing ones.However, ubiquitous computing also carries considerable risks in terms of societal acceptance and a lack of established models of innovation and wealth creation, so that unlocking its potential is far from straightforward. In order to ensure that the UK reaps the benefits of ubiquitous computing while avoiding its risks, we must address three fundamental challenges. First, we need to pursue a new technical research agenda for the widespread adoption of ubiquitous computing. Second, we must understand and design for an increasingly diverse population of users. Third, we need to establish new paths to innovation in digital business. Meeting these challenges requires a new generation of researchers with interdisciplinary skills in the technical and human centred aspects of ubiquitous computing and transferable skills in research, innovation and societal impact.Our doctoral training centre for Ubiquitous Computing in the Digital Economy will develop a cohort of interdisciplinary researchers who have been exposed to new research methods and paradigms within a creative and adventurous culture so as to provide the future leadership in research and knowledge transfer that is necessary to secure the transformative potential of ubiquitous computing for the UK digital economy. To achieve this we will work across traditional research boundaries; encourage students to adopt an end-to-end perspective on innovation; promote creativity and adventure in research; and place engagement with society, industry and key stakeholders at the core of our programme.Our proposal brings together a unique pool of researchers with extensive expertise in the technologies of ubiquitous and location based computing, user-centred design, societal understanding, and research and training in innovation and leadership. It also involves a wide spectrum of industry partners from across the value chain for ubiquitous computing, spanning positioning, communications, devices, middleware, databases, design, and our two driving market sectors of the creative industries and transportation.Our training programme is based on the approach of personalised pathways that develop individual students' interdisciplinary and transferable skills, and that produce a personal portfolio to showcase the skills and experience gained alongside the more traditional PhD thesis. It includes a flexible taught programme that emphasises student-led seminars, short-fat modules, training projects and e-learning as delivery mechanisms that are suited to PhD training; an industrial internship scheme under which students spend three months working at an industrial partner; and a PhD research project that builds on a proposal developed during the first year of training and that is supported by multiple supervisors from different disciplines with industry involvement. Our DTC will foster a community of researchers through a dedicated shared space, a programme of community building events, training for supervisors and well as students, funding for a student society, and an alumni programme.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.