
NATIONAL INSTRUMENTS CORPORATION(UK) LIMITED
NATIONAL INSTRUMENTS CORPORATION(UK) LIMITED
Funder
22 Projects, page 1 of 5
assignment_turned_in Project2014 - 2024Partners:DNA ELECTRONICS LTD, BAE Systems (UK), EMC Information Systems International, Formicary, Intel Corporation +47 partnersDNA ELECTRONICS LTD,BAE Systems (UK),EMC Information Systems International,Formicary,Intel Corporation,AMD Global,LMS International nv,Bae Systems Defence Ltd,Microsoft (United States),BlueBee Technologies,AMD (Advanced Micro Devices) UK,Dyson Limited,Codeplay Software,Codeplay Software Ltd,NATIONAL INSTRUMENTS CORPORATION(UK) LIMITED,Cluster Technology Limited,Intel (Ireland),Siemens AG (International),Intel Corporation,BASF AG,Maxeler Technologies Ltd,Geomerics Ltd,Formicary,BASF AG (International),DNA Electronics,Siemens AG,DELL (Ireland),Imperial College London,BAE Systems (Sweden),Cluster Technology Limited,Microsoft Corporation (USA),The Mathworks Ltd,Dyson Appliances Ltd,Imagination Technologies (United Kingdom),Imagination Technologies Ltd UK,Maxeler Technologies (United Kingdom),Realeyes UK,ARM Ltd,Realeyes UK,BlueBee Technologies,NEC UK Ltd,ABB (Switzerland),TOUMAZ,BAE Systems (United Kingdom),National Instruments Corp (UK) Ltd,Toumaz Technology Ltd,LMS International nv,SAP (UK) Ltd,Imagination Technologies (United Kingdom),ARM Ltd,The Mathworks Ltd,Intel (United States)Funder: UK Research and Innovation Project Code: EP/L016796/1Funder Contribution: 4,099,020 GBPHigh Performance Embedded and Distributed Systems (HiPEDS), ranging from implantable smart sensors to secure cloud service providers, offer exciting benefits to society and great opportunities for wealth creation. Although currently UK is the world leader for many technologies underpinning such systems, there is a major threat which comes from the need not only to develop good solutions for sharply focused problems, but also to embed such solutions into complex systems with many diverse aspects, such as power minimisation, performance optimisation, digital and analogue circuitry, security, dependability, analysis and verification. The narrow focus of conventional UK PhD programmes cannot bridge the skills gap that would address this threat to the UK's leadership of HiPEDS. The proposed Centre for Doctoral Training (CDT) aims to train a new generation of leaders with a systems perspective who can transform research and industry involving HiPEDS. The CDT provides a structured and vibrant training programme to train PhD students to gain expertise in a broad range of system issues, to integrate and innovate across multiple layers of the system development stack, to maximise the impact of their work, and to acquire creativity, communication, and entrepreneurial skills. The taught programme comprises a series of modules that combine technical training with group projects addressing team skills and system integration issues. Additional courses and events are designed to cover students' personal development and career needs. Such a comprehensive programme is based on aligning the research-oriented elements of the training programme, an industrial internship, and rigorous doctoral research. Our focus in this CDT is on applying two cross-layer research themes: design and optimisation, and analysis and verification, to three key application areas: healthcare systems, smart cities, and the information society. Healthcare systems cover implantable and wearable sensors and their operation as an on-body system, interactions with hospital and primary care systems and medical personnel, and medical imaging and robotic surgery systems. Smart cities cover infrastructure monitoring and actuation components, including smart utilities and smart grid at unprecedented scales. Information society covers technologies for extracting, processing and distributing information for societal benefits; they include many-core and reconfigurable systems targeting a wide range of applications, from vision-based domestic appliances to public and private cloud systems for finance, social networking, and various web services. Graduates from this CDT will be aware of the challenges faced by industry and their impact. Through their broad and deep training, they will be able to address the disconnect between research prototypes and production environments, evaluate research results in realistic situations, assess design tradeoffs based on both practical constraints and theoretical models, and provide rapid translation of promising ideas into production environments. They will have the appropriate systems perspective as well as the vision and skills to become leaders in their field, capable of world-class research and its exploitation to become a global commercial success.
more_vert assignment_turned_in Project2021 - 2025Partners:Coventry University, Compound Semiconductor App. Catapult, Coventry University, National Instruments Corp (UK) Ltd, 35Consult +7 partnersCoventry University,Compound Semiconductor App. Catapult,Coventry University,National Instruments Corp (UK) Ltd,35Consult,Oxford Instruments Group (UK),NATIONAL INSTRUMENTS CORPORATION(UK) LIMITED,Compound Semiconductor App. Catapult,Oxford Instruments Plasma Tech nology,INEX Microtechnology Ltd,Oxford Instruments Plasma Technology,35ConsultFunder: UK Research and Innovation Project Code: EP/V026577/1Funder Contribution: 360,817 GBPUndeniably, there are numerous crystal materials that surpass Silicon based devices (such as Gallium Nitride, Silicon Carbide and Diamond), but the high cost of their manufacturing has always been the roadblock for their implementation in applications therefore nowadays Silicon dominates the semiconductor industry. Gallium nitride (GaN) is a more superior semiconductor to Silicon for RF and Power applications. The advantage of GaN is that it can be grown as a thin layer on top of a standard low-cost Silicon wafer (i.e. substrate) enabling a new power device family, Power High Electron Mobility Transistors (HEMTs) on Silicon. Power HEMTs are faster, compact in size, more efficient and comparable in price for converter applications to their aging Silicon counterparts. Similarly to Silicon power technology development (from discrete devices to smart power integrated circuits), the arrival of GaN-based integrated circuits, GaN power transistors monolithically integrated with Hall-effect and temperature sensors, GaN gate drivers and ASICs, will facilitate widespread use of gallium nitride technology for high-volume applications. The GaN Smart Power Integrated Circuit Technology (GaN SPICe) project brings together the Universities of Coventry and Glasgow to investigate, develop and provide functional verification of the game-changing GaN smart power integrated technology; the group will be the 1st in the World to integrate a normally-off power GaN HEMT with advanced galvanic Hall-effect and temperature sensors. HEMT is a voltage controlled device and on-chip monitoring of its output current is critical for safe and long operation of an electronic system, similar to monitoring one's heart rate. The galvanic sensor is a GaN Hall-effect device accompanied by signal conditioning circuitry (with Coventry's filed patent application number 1913936.9), to minimise drift in sensor characteristics at elevated temperatures. This will increase functionality, enable a reduction of system volume, reduce cost of assembly, and as chip temperature can be actively compensated, improve reliability and efficiency of the power device. These are fundamental requirements for complex power electronics systems, in particular when installed in limited volume, hostile (high temperature/vibration) environments, such as battery electric and hybrid vehicles for example. Coventry and Glasgow are uniquely positioned to make this project success, thanks to the track record and expertise of its academic and research staff, GaN power HEMT at Glasgow and GaN Hall-effect sensors at Coventry, and the investment in their laboratory facilities (clean room, design, and test and characterisation laboratories), making it one of very few research consortiums, in the UK and overseas, capable of providing innovation at every stage of this development.
more_vert assignment_turned_in Project2015 - 2019Partners:OC Robotics, Shadow Robot Company Ltd, University of Sheffield, University of Sheffield, Lablogic Systems (United Kingdom) +14 partnersOC Robotics,Shadow Robot Company Ltd,University of Sheffield,University of Sheffield,Lablogic Systems (United Kingdom),Rolls-Royce Plc (UK),Lablogic Systems Limited,The Shadow Robot Company,Durridge UK Ltd,National Instruments Corp (UK) Ltd,Rolls-Royce (United Kingdom),Rolls-Royce (United Kingdom),VBC Group,Durridge UK Ltd,Swagelok London,NATIONAL INSTRUMENTS CORPORATION(UK) LIMITED,OC Robotics,[no title available],VBC GroupFunder: UK Research and Innovation Project Code: ST/N000277/1Funder Contribution: 2,788,500 GBPIt is an exceptional time for discoveries in particle physics and particle astrophysics and the research we wish to conduct in this STFC consolidated grant programme at Sheffield is at the heart of this action. Foremost recently has been the discovery by ATLAS of a Higgs boson particle. Members of the group led and helped to develop the key 4-lepton analysis upon which the discovery was based. We will now use our expertise to measure carefully the properties of the new particle to establish whether it is the Higgs boson predicted by theory, or something else. We will also search for squark and gluino particles predicted by supersymmetry theory, which will be the main target of the next, higher energy, run of the LHC. Preparing for the future, we will expand our role in the ATLAS upgrade programme to build key components of a new ATLAS tracker. Our involvement in the T2K experiment in Japan also greatly benefited from confirmation of a non-zero third neutrino mixing angle, a result fundamental to our understanding of the neutrino. The group's respected work in neutrino analyses for T2K, particularly of so-called charge current and neutral current events, will continue along with international responsibilities for data management and for the critical light injection calibration system. However, bolstered by the exciting new results we will now also accelerate participation in next generation long baseline neutrino experiment for CP violation aimed to unravel the mystery of antimatter in the Universe, notably using LBNE/F in the US and Hyper-K in Japan. For these our particular focus will be on detector construction. For the precursor LAr1-ND experiment at Fermilab we plan to construct the central Anode Plane Array for the detector, while working also on our pioneering liquid argon R&D. We will also establish novel detector prototypes at the new CERN-based neutrino platform and for LBNE/F itself. Closely related here will be work on the MICE experiment towards a potential future neutrino factory, plus related R&D on high power particle beam targets for future neutrino beams and experiments. For particle astrophysics we plan to expand work on gravitation waves, through specialist noise analysis for Advanced Ligo, and develop new effort on dark matter, thought to comprise 90% of the Universe. There is strong motivation here because the US LUX experiment recently produced a step-change in sensitivity to dark matter particles. We will complete leading analysis for the EDELWEISS experiment and then lead key simulations for the upcoming LZ experiment in the US. Following our pioneering work on detectors with sensitivity to galactic signatures, the group will also lead analysis and construction tasks for the DRIFT direction sensitive experiment at Boulby and the new DM-ICE250 NaI experiment, which US collaborators recently agreed will be hosted at Boubly. DM-ICE will seek a new annual modulation signal for dark matter. These experiments are all searching WIMP particles, but we will also expand study of axions as a potential alternative. Meanwhile, our generic detector R&D and knowledge exchange programme is vital to underpinning the group's expertise and skills-base. It benefits from our historic links to the Boulby deep underground science laboratory but critically now involves multiple industrial and non-STFC projects. Noteworthy aims now will be to complete our DECC-funded programme on muon tomography for climate change, develop new instrumentation for radon assay, spin-out work on novel motor control electronics via a new patent and continue development of novel welding technology. It is interesting that our long-standing efforts to develop liquid argon technology for neutrino physics are also relevant to medical imaging requirements. We plan to complete a new prototype instrument, building on a recent MRC award. This all reflects the group's commitment to contributing to societal and impact agendas.
more_vert assignment_turned_in Project2020 - 2025Partners:CARDIFF UNIVERSITY, Siemens plc (UK), UCL, HiETA Technologies Ltd, SIEMENS PLC +7 partnersCARDIFF UNIVERSITY,Siemens plc (UK),UCL,HiETA Technologies Ltd,SIEMENS PLC,Cardiff University,Cool Dynamic,National Instruments Corp (UK) Ltd,HiETA Technologies Ltd,NATIONAL INSTRUMENTS CORPORATION(UK) LIMITED,Cool Dynamic,Cardiff UniversityFunder: UK Research and Innovation Project Code: EP/T009314/1Funder Contribution: 1,477,880 GBPA hydrogen economy has been the focus of researchers and developers over the decades. However, the complexity of moving and storing hydrogen has always been a major obstacle to deploy the concept. Therefore, other materials can be employed to improve handling whilst reducing cost over long distances and long periods. Ammonia, a highly hydrogenated molecule, can be used to store and distribute hydrogen easily, as the molecule has been employed for more than 120 years for fertilizer purposes. Being a carbon-free chemical, ammonia (NH3) has the potential to support a hydrogen transition thus decarbonising transport, power and industries. However, the complexity of using ammonia for power generation lays on the appropriate use of the chemical to reach high power outputs combined with currently low efficiencies that bring up overall costs. This complex scenario is also linked to the production of combustion profiles that tend to be highly polluting (with high NOx emissions and slipped unburned ammonia). There is no technology capable of using ammonia whilst producing both low emissions and high efficiencies in large power generation devices, thus efficiently enabling the recovery of hydrogen and reconversion of stranded, green energy that can be fed back to the grid. Tackling these problems can resolve one of the most important barriers in the use of such a molecule and storage of renewable energies. Countries such as Japan have engaged in ambitious programs to resolve these issues, aiming for large power units to run on ammonia by 2030. Thus, European counterparts, led by UK innovation, need also to engage in these technological advancements to fully unlock a hydrogen, cost-effective economy. Therefore, this project seeks to establish fundamental results that will ensure the development of an improved combustor for the use of ammonia to produce low NOx emissions combined with low ammonia slip. Hydrogen production, which will be generated through the combustion process of NH3, will also serve to increase power outputs, thus enabling the production of large power in compact systems, raising efficiency and decreasing overall cost. Improvement techniques will be assessed in currently deployed systems (Siemens gas turbines) to determine the feasibility of implementation in these devices, cutting both costs and times for units that can be employed to use ammonia as fuel in the near future. The novel combustion system proposed will be also integrated into a new ammonia micro gas turbine. The system will be combined with novel thermodynamic principles that will lead into a trigeneration cycle (cooling, power and heat) to unlock all the potential benefits of ammonia, whilst raising even more the efficiency of the system, thus creating a unique, competitive technology that can be implemented to support the hydrogen transition with negligible carbon footprint and environmental penalties. The project will be supported by companies of international reputation (Siemens, Yara, National Instruments) and UK-European innovation enterprises looking for new areas of development (Hieta, Scitek, CoolDynamics) with the creation of unique, innovative products needed for the implementation of ammonia combustion systems and humidified ammonia-hydrogen cycles. Moreover, the outcome of the project will be ensured via Open Access documentation with bespoke numerical and experimental results that will be supplemented by series of high impact publications and seminars, thus increasing awareness of the importance of using ammonia as part of the energy mix of the following decades, having the UK as core of these developments.
more_vert assignment_turned_in Project2018 - 2020Partners:National Instruments Corp (UK) Ltd, Electronic Media Services Ltd, Sony, RWTH, NATIONAL INSTRUMENTS CORPORATION(UK) LIMITED +4 partnersNational Instruments Corp (UK) Ltd,Electronic Media Services Ltd,Sony,RWTH,NATIONAL INSTRUMENTS CORPORATION(UK) LIMITED,Queen Mary University of London,Sony Corporation (Global),Electronic Media Services Ltd,QMULFunder: UK Research and Innovation Project Code: EP/R00711X/1Funder Contribution: 1,061,140 GBPData rate for exchanging mobile information among people, machines and things has been exponentially increasing over the past decade. These data rates are empirically linked to radio spectrum availability. The exorbitant auction prices, e.g., £2.3 Billion for 4G spectrum in the UK, highlights the strength of the competitive market forces but also the scarcity of this precious resource. Driven by the scarcity of spectrum, the UK communications regulator (Ofcom) has made an innovative licence-exempt spectrum sharing on the ultra-high frequency (UHF) TV bands in January 2016, which is the first of its kind worldwide. These spectra of 320MHz bandwidth have enabled the transition from research on cognitive radio theory into practical applications. Furthermore, the millimetre-wave (mm-wave) spectrum on 28GHz, 39GHz, 60GHz with at least 1GHz bandwidth are being considered to be further unitised to cope with high data rate wireless applications and services demanded by users. The satellite and radar applications are co-existing in these mm-wave spectra, and thus any licence-exempt use of this spectra must first ascertain that the spectra to be used is not already in use by the so called "primary users". Therefore, sensing from several hundreds of MHz bandwidth in UHF to GHz bandwidth in mm-wave to gain a clear access to these spectra is critical, while resulting in formidable and complex challenge on the Nyquist-rate analog-to-digital sampling. This fellowship project proposes a new approach to design GHz bandwidth sensing (GBSense) systems to overcome the bottleneck of Nyquist-rate sampling by developing sub-Nyquist sampling algorithms and repurposing the existing expertise of smart antennas and reconfigurable transmission lines. The GBSense offers new creative and implementable possibilities over a framework of real-time experimental platform without requiring Nyquist-rate sampling. The GBSense gives users access to a flexible hardware platform and application software that enables real-time over the air GHz bandwidth signal sensing, analysis and communication at both sub-6GHz and mm-wave frequency bands. It will also interface with a low-cost computing unit, e.g., Raspberry PI, where sub-Nyquist algorithms are hosted, for enabling better human-computer interaction and advance the current knowledge in sub-Nyquist sampling theory and bring a new set of challenges to both software and hardware engineers. Results will be disseminated to both software and hardware academic researchers, industry and the public through workshops, change-led competitions, open-source plans and outreach activities.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right