Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Approach for Water and Energy Savings in Public Buildings: A Case Study of Brazilian Rail Company

An Approach for Water and Energy Savings in Public Buildings: A Case Study of Brazilian Rail Company

Abstract

Water scarcity is a current problem in many parts of the planet and there is a worldwide concern about water availability to meet future water demand. In countries like Brazil, where most of the electricity is produced by hydroelectric power plants, water scarcity directly impacts energy production. The water–energy nexus is directly related and impacted by CO2 emissions and its climate consequences, which calls to a broader approach: energy–carbon–water nexus. In this context, the Sustainable Water and Energy Consumption (SWEC) Program was developed to mitigate water and energy supply problems in a railway company in Brazil. The actions took place in four main areas: (a) users conscientization, (b) consumption diagnosis, (c) indicators for evaluating water and energy consumption, and (d) evaluation of implementing alternative cleaner water and energy sources. The per capita consumption of water and energy were reduced by 10% and 19%, respectively. Permanent results were achieved by the SWEC Program, such as the acquisition of two photovoltaic systems with a total capacity of 96.5 kWp. The investment made provided an average monthly reduction in energy consumption of 56% in 2022. This work contributed to the UN Agenda 2030 and the findings may help companies and industries, and other institutions, such as universities and schools, to improve their water and electricity consumption.

Keywords

Sustainable water consumption, Railway system, Greenhouse gas emissions, Energy conservation, Photovoltaic system, Footprint carbon

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research