Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Other ORP type . 2018
Data sources: IRIS Cnr
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ceramic-foam-structured Rh/CeO2 catalysts: In-situ combustion deposition and biogas reforming performance

Authors: C Italiano; L Pino; M Laganà MA Ashraf; S Specchia; A Vita;

Ceramic-foam-structured Rh/CeO2 catalysts: In-situ combustion deposition and biogas reforming performance

Abstract

The application of ceramic foams as structured catalyst supports is clearly expanding due to their interesting specific properties (large exchange area, low pressure drops, high mass and heat transfer properties). In the present work, alumina open-cell foams (OCFs) with different pore density (20,30 and 40 ppi) were coated with Rh/CeO2 catalyst via a two steps synthesis method involving i) the solution combustion synthesis (SCS) to in-situ deposit the CeO2 carried and the ii) wet impregnation (WI) of the Rh active phase. The coated structures were characterized by SEM/EDX and TEM analysis to analyze the morphological characteristics of the deposited films; the mechanical stability was analyzed using ultrasound tests; the permeability and form coefficient were derived from the pressure drop data. The activity and stability of the structured catalysts were investigated towards the steam reforming (SR) and oxy-steam reforming (OSR) of biogas at atmospheric pressure varying temperature (700-900°C), space velocity (35,000-230,000 Nmlog-1oh-1) and time-on-stream (up to 200 h). Catalytic tests were carried out at S/CH4=3 for SR experiments and S/CH4=1 and O2/CH4=0.2 for OSR experiments. Homogeneous, thin (5-40 ?m) and high-resistance coating layers were obtained. Structured catalysts showed high activity, following the order 20 ppi < 30 ppi ? 40 ppi. External mass transfer diffusion, evaluated by Damköhler and Carberry numbers, could be improved by reducing the pore diameter of the OCF structures, whereas Damköhler and Weisz-Prater numbers confirmed the absence of internal mass transport limitation due to thin coating thickness provided by SCS method. Good stability was observed over 200 h for both SR and OSR processes.

Country
Italy
Related Organizations
Keywords

reforming, monolith, biogas, structured catalysts, foam, combustion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research