Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Other ORP type . 2019
Data sources: IRIS Cnr
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of vapour absorption refrigeration systems driven by internal combustion engine wast heat for fishing vessels applications, Joint R&D project Bilateral Agreement CNR/UM - report of 1st year activity

Authors: V Palomba; GE Dino; S Vasta; A Frazzica; C Micallef; R Ghirlando;

Investigation of vapour absorption refrigeration systems driven by internal combustion engine wast heat for fishing vessels applications, Joint R&D project Bilateral Agreement CNR/UM - report of 1st year activity

Abstract

The aim of the joint activity between CNR ITAE and University of Malta, funded in the framework of a bilateral agreement is the preliminary study of the possible application of thermally-activated technologies for the refrigeration of fish on-board of fishing vessels, with particular attention to the Mediterranean area. In such a context, the two partners, given their expertise in the adsorption and absorption cooling technologies, dedicated the first year of the joint project on several activities needed to define possible integration solutions on-board. The following report is then organized as follows: - Section 3 reports an analysis of the state-of-the-art concerning existing refrigeration systems currently employed in the fishing vessels' application as well as innovative activities recently performed on the possible integration of thermally-driven technologies for the refrigeration. - Section 4 focuses on the definition of possible integration between the waste heat recovered from the engines of the fishing vessel and the sorption technology for refrigeration. This analysis takes into account different possible applications, in terms of refrigeration temperatures as well as capacities. Furthermore, different possible waste heat streams at different temperature levels are investigated. - Section 5 identifies the typical working boundary conditions under which the fishing vessel operates, in terms of cooling demand, also considering different climatic zones (i.e. different geographical areas in which the vessel operates) and vessels' typology. - Section 6 investigates possible working pairs, both for adsorption and absorption technologies, which are promising for the given boundary conditions in Section 5. This activity is needed to set the operational limits that each technology and working pair cannot overcome. - Section 7 reports the calculations performed for each working pair and operating conditions, both taking into account thermodynamic constraints as well as analysing literature results on different prototypes realized and tested. - Section 8 introduces a dynamic model, implemented in TRNSYS environment, of an absorption refrigerator, which was validated and will be used in the following activities to investigate the defined schematics in Section 4. - Section 9 defines the Key Performance Indicators (KPIs) that will be used in the following activities to compare the achievable results of the different configurations.

Related Organizations
Keywords

sorption, waste heat, compression, fishing, energy efficiency

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research