Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ENEA Open Archivearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhancing the recovery of gypsum in limestone-based wet flue gas desulfurization with high energy ball milling process: A feasibility study

Authors: Molino, A.;

Enhancing the recovery of gypsum in limestone-based wet flue gas desulfurization with high energy ball milling process: A feasibility study

Abstract

The most common system for flue gas desulfurization (FGD) is the wet scrubbing process in which, the contact between the flue gases to be treated and an alkaline sorbent such limestone is realized with the correspondent production of gypsum. The production of gypsum represent a perfect example of how is possible to obtain a new product for the market starting from the need of environmental protection (the sulphur dioxide (SO2) removal). Today, limestone is ground in long drum mill reaching a size in the range 5–10 mm. With the intent of increasing the specific surface area of limestone and consequently the gypsum production, the raw limestone was treated in a high-energy mill. The performance of such micronized limestone in terms of gypsum production and SO2 removal were then evaluated by means of a bench scale desulfurization test. Subsequently, a feasibility study with the goal to verify the possible advantages simulating the application of the micronized limestone on a full-scale Waste-to-Energy (WtE) plant was realized. Results showed how the micronization process occurred securely, with a greater production of gypsum and better performance in terms of SO2 removal. Additionally, the micronization solutions tested in the present study showed the suitability also from economic and environmental point of view. Since there are many power plants or WtE plants worldwide and, in many cases, they adopt a wet FGD, this study may be attractive for plant operators. The greater production of gypsum through the use of micronized limestone may help reduce the consumption of raw materials, which increased in recent years due to growing demand of the building industry. © 2017 Institution of Chemical Engineers

Country
Italy
Keywords

Multi-criteria analysis, Tecnologie Portici, Waste-to-energy plant, Sulphur dioxide, Gypsum, High-energy mill, Mechanochemistry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research