Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Other ORP type . 2012
Data sources: Research@WUR
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

How biotic interactions may alter future predictions of species distributions: Future threats to the persistence of the arctic fox in Fennoscandia

Authors: Hof, Anouschka R.; Jansson, Roland; Nilsson, Christer;

How biotic interactions may alter future predictions of species distributions: Future threats to the persistence of the arctic fox in Fennoscandia

Abstract

Aim With climate change, reliable predictions of future species geographic distributions are becoming increasingly important for the design of appropriate conservation measures. Species distribution models (SDMs) are widely used to predict geographic range shifts in response to climate change. However, because species communities are likely to change with the climate, accounting for biotic interactions is imperative. A shortcoming of introducing biotic interactions in SDMs is the assumption that biotic interactions remain the same under changing climatic factors, which is disputable. We explore the performance of SDMs while including biotic interactions. Location Fennoscandia, Europe. Methods We investigate the appropriateness of the inclusion of biotic factors (predator pressure and prey availability) in assessing the future distribution of the arctic fox (Alopex lagopus) in Fennoscandia by means of SDM, using the algorithm MaxEnt. Results Our results show that the inclusion of biotic interactions enhanced the accuracy of SDMs to predict the current arctic fox distribution, and we argue that the accuracy of future predictions might also be enhanced. While the range of the arctic fox is predicted to have decreased by 43% in 2080 because of temperature-related variables, projected increases in predator pressure and reduced prey availability are predicted to constrain the potential future geographic range of the arctic fox in Fennoscandia 13% more. Main conclusions The results indicate that, provided one has a good knowledge of past changes and a clear understanding of interactions in the community involved, the inclusion of biotic interactions in modelling future geographic ranges of species increases the predictive power of such models. This likely has far-reaching impacts upon the design and implementation of possible conservation and management plans. Control of competing predators and supplementary feeding are suggested as necessary management actions to preserve the Fennoscandian arctic fox population in the face of climate change.

Country
Netherlands
Related Organizations
Keywords

Food availability, Lemmus lemmus, Climate change, Vulpes vulpes, Alopex lagopus, Predator-prey interaction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research