
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Fusing radar and optical remote sensing for biomass prediction in mountainous tropical forests
Field measured estimates of aboveground biomass (AGB) in the mountainous region of Bwindi Impenetrable National Park ('Bwindi'), Uganda were used to train remote sensing models in order to estimate AGB within the park. AGB estimates were extrapolated using dual-polarization radar satellite data from ALOS PALSAR, optical imagery from Landsat 7 and a fusion of both, and compared to field estimates as indicators of the model prediction strength. Significant geolocation errors existed in the radar data due to the extreme terrain. Fusing the radar and optical data using the non-parametric algorithm Random Forest (RF) in R, provided lower error than using either radar or optical data alone (RMSE ∼120 Mg ha-1), however, saturation at higher biomass levels was evident. The AGB in Bwindi was estimated at 8.91 Tg ± 0.39 Tg (260.9 Mg ha-1 ± 11.4 Mg ha-1).
- Wageningen University & Research Netherlands
tropical forest, radar remote sensing, ALOS PALSAR, forestry, Biomass
tropical forest, radar remote sensing, ALOS PALSAR, forestry, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
