Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PANGAEA
Other ORP type . 2018
License: CC BY
Data sources: PANGAEA
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Survival of herring larvae, Clupea harengus L., under projected end-of-the-century CO2-levels, as part of a complete pelagic food web in a mesocosm experiment (KOSMOS, Kristineberg, Sweden 2013), supplement to: Sswat, Michael; Stiasny, Martina H; Taucher, Jan; Algueró-Muñiz, Maria; Bach, Lennart Thomas; Jutfelt, Fredrik; Riebesell, Ulf; Clemmesen, Catriona (2018): Food web changes under ocean acidification promote herring larvae survival. Nature Ecology & Evolution, 2(5), 836-840

Authors: Sswat, Michael; Algueró-Muñiz, Maria; Taucher, Jan; Bach, Lennart Thomas; Jutfelt, Fredrik; Riebesell, Ulf; Stiasny, Martina H; +1 Authors

Survival of herring larvae, Clupea harengus L., under projected end-of-the-century CO2-levels, as part of a complete pelagic food web in a mesocosm experiment (KOSMOS, Kristineberg, Sweden 2013), supplement to: Sswat, Michael; Stiasny, Martina H; Taucher, Jan; Algueró-Muñiz, Maria; Bach, Lennart Thomas; Jutfelt, Fredrik; Riebesell, Ulf; Clemmesen, Catriona (2018): Food web changes under ocean acidification promote herring larvae survival. Nature Ecology & Evolution, 2(5), 836-840

Abstract

Ocean acidification, the decrease in seawater pH due to rising CO2 concentrations, has been shown to lower survival in early life stages of fish and, as a consequence, the recruitment of populations including commercially important species. To date, ocean-acidification studies with fish larvae have focused on the direct physiological impacts of elevated CO2, but largely ignored the potential effects of ocean acidification on food web interactions. In an in situ mesocosm study on Atlantic herring (Clupea harengus) larvae as top predators in a pelagic food web, we account for indirect CO2 effects on larval survival mediated by changes in food availability. The community was exposed to projected end-of-the-century CO2 conditions (~760 µatm pCO2) over a period of 113 days. In contrast with laboratory studies that reported a decrease in fish survival, the survival of the herring larvae in situ was significantly enhanced by 19 ± 2%. Analysis of the plankton community dynamics suggested that the herring larvae benefitted from a CO2-stimulated increase in primary production. Such indirect effects may counteract the possible direct negative effects of ocean acidification on the survival of fish early life stages. These findings emphasize the need to assess the food web effects of ocean acidification on fish larvae before we can predict even the sign of change in fish recruitment in a high-CO2 ocean.

Keywords

Day of experiment, Particle concentration, Biological Impacts of Ocean Acidification (BIOACID), Time in days, Survival, Chlorophyll a, Mesocosm experiment, Event label, KOSMOS 2013, Treatment, Copepoda, DATE/TIME, Status, Copepodites, Nauplii, Clupea harengus, larvae, Mesocosm label

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Funded by
Related to Research communities
Energy Research