Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PANGAEA
Other ORP type . 2008
License: CC BY
Data sources: PANGAEA
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

(Table 1) Development of pressure inside LTC 3 during 57 days, supplement to: Abegg, Friedrich; Hohnberg, Hans-Jürgen; Pape, Thomas; Bohrmann, Gerhard; Freitag, Johannes (2008): Development and application of pressure-core-sampling systems for the investigation of gas- and gas-hydrate-bearing sediments. Deep Sea Research Part I: Oceanographic Research Papers, 55(11), 1590-1599

Authors: Abegg, Friedrich; Hohnberg, Hans-Jürgen; Pape, Thomas; Bohrmann, Gerhard; Freitag, Johannes;

(Table 1) Development of pressure inside LTC 3 during 57 days, supplement to: Abegg, Friedrich; Hohnberg, Hans-Jürgen; Pape, Thomas; Bohrmann, Gerhard; Freitag, Johannes (2008): Development and application of pressure-core-sampling systems for the investigation of gas- and gas-hydrate-bearing sediments. Deep Sea Research Part I: Oceanographic Research Papers, 55(11), 1590-1599

Abstract

Free or hydrate-bound gas in the seafloor has been of scientific, ecologic and economic interest for many years because it predominantly contains high concentrations of low-molecular-weight hydrocarbons. A prerequisite of accurate quantifications of gases in sediments is to preserve pressure and temperature close to the in situ conditions during recovery. Here we introduce two new sediment coring devices that allow for the recovery of near-surface gas- and gas-hydrate-bearing sediments and subsequent investigations using several different techniques such as visualisation by computerized tomography, quantitative degassing, and sediment and porewater analyses. The first coring tool, the Multiple Autoclave Corer (MAC), resembles a standard multiple corer in terms of applications, size and core length of about 55 cm. The second tool, the Dynamic Autoclave Piston Corer (DAPC), is similar to a piston corer in application and size and enables one to take cores of up to 2.5 m length. Both focus on the investigation of near-surface sediments, which are most strongly affected by changes in bottom-water temperature and hydrostatic pressure, which in turn influence continental slope stability. Some results from recent offshore applications show the potential of these tools.

Keywords

Sonne, Pressure, Television Multi-Autoklave corer, Optical pressure gauge, SO165/2, Center for Marine Environmental Sciences (MARUM)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average