Powered by OpenAIRE graph
Found an issue? Give us feedback

LUMOR

Theory and principles of luminescent organic radical materials for OLED and sensor applications
Funder: European CommissionProject code: 101077649 Call for proposal: ERC-2022-STG
Funded under: HE | ERC | HORIZON-ERC Overall Budget: 1,500,000 EURFunder Contribution: 1,500,000 EUR
Description

Organic luminescent radicals (OLRs) are quite rare emitters demonstrating doublet-doublet fluorescence and having a number of advantages towards practical applications in organic light emitting diodes (OLEDs), ratiometric fluorescence sensors and anti-counterfeiting labelling. The doublet-doublet fluorescence by OLRs is a spin-allowed process similarly to the common singlet-singlet fluorescence. But in contrast to closed-shell molecules for which “bright” excited singlet states are higher in energy than “dark” triplet states, the doublet excited states of OLRs are always lower in energy than the quartet states. That is why the theoretical limit for internal quantum efficiency of OLR-based OLEDs is expected to be 100% and why the quartet excited states in general have not been considered for OLRs. However, recent experimental studies indicate that quartet states of OLR emitters indeed can be populated in OLEDs so reducing their efficiency. Thus, in the current project I aim to develop general theory and principles of OLRs in order to involve quartet states into the emission process and to boost the efficiency of OLEDs beyond state-of-art results. Another challenge for this project is design of OLRs for sensor applications. Most of OLRs possess low-lying first excited doublet state that makes them perfect anti-Kasha emitters for which emission occurs from higher excited states, something that is rare for closed-shell systems but required for ratiometric fluorescence sensors. In this project I aim to extend the principles of anti-Kasha emission for OLRs to make a breakthrough in state-of-art ratiometric detection of radicals. Finally, the special kind of sensing called two-step anti-counterfeiting labelling will be developed in this project based on photoresponsive aromatic carbonyls. These compounds are environment friendly, they can easily generate stable OLRs upon UV irradiation that I will utilize for innovative anti-counterfeiting application.

Partners
Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::ef23b3743e9a3aab0cc6d2a39c93e2ff&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down