Loading
The global EV market is largely reliant on battery electric vehicles (BEVs) that employ lithium-ion (Li-ion) batteries, mostly based on liquid electrolytes. Due to extensive research and development of Li-ion, we are gradually reaching the maximum chemical potential of today’s electrode materials regarding Nickel-rich cathodes. Yet Li-ion based battery systems, based on liquid electrolytes, still face significant limitations , due to their chemistries, such as high flammability , potential safety risks, burning, and explosions, electrochemical instabilities, and low ion selectivity. In this regard, promising solutions are emerging in the form of solid-state battery EV (SSBEV) technology. However, the inherent differences between SSBs and traditional Li-ion batteries such as fundamentally distinct operating temperatures, charging rates, form factor and cell safety characteristics introduce complexities in integrating them into existing BEV systems, necessitating a redesign of the several systems. To meet this need, ARISE will develop an advanced solid-state, fourth generation (Gen-4) Li-ion battery system that offers advanced high-performance features, based on a cell-to-chassis concept with expandable modules that is applicable to any next generation S SBEV. ARISE will cover 3 different development paths: 1) a new city car chassis design utilizing SSBs that is expandable when needed, 2) a novel battery and pack level Thermal Management System compatible with SSBs, 3) Smart Battery Management System that controls battery expansion, fast charging, and safety.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::f3b840f459a8fa7fb8ecc663ba7a86a4&type=result"></script>');
-->
</script>