Powered by OpenAIRE graph
Found an issue? Give us feedback

CAPTure

Competitive SolAr Power Towers – CAPTure
Funder: European CommissionProject code: 640905 Call for proposal: H2020-LCE-2014-1
Funded under: H2020 | RIA Overall Budget: 6,461,970 EURFunder Contribution: 6,104,030 EUR
visibility
downloads
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
568
628
Description

The main objective of this project is to significantly reduce costs of concentrated solar power, in order to pave the way for its deserved competitiveness on the power market. Specifically, the solar-to-electric conversion efficiency of the plant will be improved by increased receiver operating temperatures as well as an innovative power cycle configuration also providing advantages regarding plant operation. Additionally, improved control methodologies based on dynamic multi-aiming-point strategies for heliostats will further enhance efficiency. Besides the improvement of the plants efficiency and operation, also the construction and operational costs will be minimized via mass production of heliostats and smart heliostat calibration systems. The global objective of this project is to increase plant efficiencies and reduce levelized cost of electricity (LCOE) by developing all relevant components that allow implementing an innovative plant configuration. This plant configuration is based on a multi-tower decoupled advanced solar combined cycle approach that not only increases cycle efficiencies but also avoids frequent transients and inefficient partial loads, thus maximizing overall efficiency, reliability as well as dispatchability, all of which are important factors directly related to cost competitiveness on the power market. The core topic of the project, the innovative solar receiver, will be an open volumetric receiver allowing operating temperatures beyond 1200 ºC, providing the absorbed solar heat to the pressurized air circuit of the Brayton cycle via a network of fixed bed regenerative heat exchangers working in alternating modes (non-pressurized heating period, pressurized cooling period).

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 568
    downloads downloads 628
  • 568
    views
    628
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::111bbc1d8d9af97aad39bb68f0d4fc2a&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down