Powered by OpenAIRE graph
Found an issue? Give us feedback

HEALTH-CODE

Real operation pem fuel cells HEALTH-state monitoring and diagnosis based on dc-dc COnverter embeddeD Eis
Funder: European CommissionProject code: 671486 Call for proposal: H2020-JTI-FCH-2014-1
Funded under: H2020 | FCH2-RIA Overall Budget: 2,358,740 EURFunder Contribution: 2,358,740 EUR
visibility
downloads
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
38
96
Description

HEALTH-CODE aims at implementing an advanced monitoring and diagnostic tool for μ-CHP and backup PEM fuel cell systems equipped with different stacks. Such a tool is able to determine the FC current status (condition monitoring) to support stack failures detection and to infer on the residual useful lifetime. Five failure modes will be detected: i) change in fuel composition; ii) air starvation; iii) fuel starvation; iv) sulphur poisoning; v) flooding and de-hydration. The main project objectives are: i) the enhancement of electrochemical impedance spectroscopy (EIS) based diagnosis; ii) the development of a monitoring and diagnostic tool for state-of-health assessment, fault detection and isolation as well as degradation level analysis for lifetime extrapolation; iii) the reduction of experimental campaign time and costs. Moreover, the improvement of power electronics for FC is also considered. These targets will be achieved through the implementation of several methodologies and techniques, well suited for industrial application. Several algorithms will be developed relying on on-board EIS measurements of the fuel cell system impedance. Moreover, low-cost diagnostic concepts are also proposed for a straightforward implementation on FCS controllers. The project exploits the outcomes of the previous FCH 1 JU funded project D-CODE, during which a proof of-concept validated in laboratory (TRL3-4) was developed. HEALTH-CODE will increase the TRL up to level 5. The exploitation of the project outcomes will lead to low-cost and reliable monitoring and diagnostic approaches and related applications (e.g. power electronics). These results will have an impact on stationary FCS with a direct increase in electrical efficiency, availability and durability, leading to a reduction in maintenance and warranty costs, thus increasing the customers’ satisfaction. Therefore, HEALTH-CODE contributes to the enhancement of FC competitiveness towards a wider market deployment.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 38
    downloads downloads 96
  • 38
    views
    96
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::20dfa91f1025c6b6d437c86f90a705c4&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down