Powered by OpenAIRE graph
Found an issue? Give us feedback

QuProCS

Quantum Probes for Complex Systems
Funder: European CommissionProject code: 641277 Call for proposal: H2020-FETPROACT-2014
Funded under: H2020 | RIA Overall Budget: 2,268,750 EURFunder Contribution: 2,268,750 EUR
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
2K
1K
Description

We are on the verge of a new scientific and technological era as the first quantum simulators able to investigate physical systems that cannot be studied classically are about to be built in the laboratories. Controlling and probing complex quantum systems is of paramount importance for the implementation of these devices. Quantum simulators are controllable complex quantum systems that emulate the behaviour of other quantum systems whose properties cannot be easily tested. While several models of quantum simulators are currently under construction, the development of effective probing techniques is still lagging behind, despite their crucial role. In most of the quantum simulator experiments measurement techniques are invasive and destructive, destroying not only the very quantum properties from which the simulator stems, but often also the quantum system itself. QuProCS works on the development of a radically new approach to probe complex quantum systems for quantum simulations, based on the quantification and optimisation of the information that can be extracted by an immersed quantum probe as opposed to a classical one. The team will theoretically investigate and experimentally implement quantum information probes to detect and characterise quantum correlations, quantum phase transitions, transport properties, and nonequilibrium phenomena in ultracold gases. By a shift in perspective to a complementary viewpoint, we will at the same time investigate experimentally, in a quantum optical platform, how changing the properties of the environment via reservoir engineering modifies the behaviour of the quantum probe. We will develop optimal probing strategies to read out and benchmark quantum simulators, thus providing the most crucial ingredient for commercial devices.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2K
    download downloads 1K
  • 2K
    views
    1K
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::49dacb3babd9ec29917fa5804ad17831&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down