Powered by OpenAIRE graph
Found an issue? Give us feedback

PreCoM

Predictive Cognitive Maintenance Decision Support System
Funder: European CommissionProject code: 768575 Call for proposal: H2020-FOF-2017
Funded under: H2020 | IA Overall Budget: 7,221,610 EURFunder Contribution: 6,146,400 EUR
visibility
downloads
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
247
305
Description

Cheaper and more powerful sensors, together with big data analytics, offer an unprecedented opportunity to track machine-tool performance and health condition. However, manufacturers only spend 15% of their total maintenance costs on predictive (vs reactive or preventative) maintenance. The project will deploy and test a predictive cognitive maintenance decision-support system able to identify and localize damage, assess damage severity, predict damage evolution, assess remaining asset life, reduce the probability of false alarms, provide more accurate failure detection, issue notices to conduct preventive maintenance actions and ultimately increase in-service efficiency of machines by at least 10%. The platform includes 4 modules: 1) a data acquisition module leveraging external sensors as well as sensors directly embedded in the machine tool components, 2) an artificial intelligence module combining physical models, statistical models and machine-learning algorithms able to track individual health condition and supporting a large range of assets and dynamic operating conditions, 3) a secure integration module connecting the platform to production planning and maintenance systems via a private cloud and providing additional safety, self-healing and self-learning capabilities and 4) a human interface module including production dashboards and augmented reality interfaces for facilitating maintenance tasks. The consortium includes 3 end-user factories, 3 machine-tool suppliers, 1 leading component supplier, 4 innovative SMEs, 3 research organizations and 3 academic institutions. Together, we will validate the platform in a broad spectrum of real-life industrial scenarios (low volume, high volume and continuous manufacturing). We will also demonstrate the direct impact of the platform on maintainability, availability, work safety and costs in order to document the results in detailed business cases for widespread industry dissemination and exploitation.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 247
    downloads downloads 305
  • 247
    views
    305
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::68649ed02493a4734f5edc439c0437f1&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down