Powered by OpenAIRE graph
Found an issue? Give us feedback

eNANO

FREE ELECTRONS AS ULTRAFAST NANOSCALE PROBES
Funder: European CommissionProject code: 789104 Call for proposal: ERC-2017-ADG
Funded under: H2020 | ERC | ERC-ADG Overall Budget: 1,899,790 EURFunder Contribution: 1,899,790 EUR
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1K
2K
Description

With eNANO I will introduce a disruptive approach toward controlling and understanding the dynamical response of material nanostructures, expanding nanoscience and nanotechnology in unprecedented directions. Specifically, I intend to inaugurate the field of free-electron nanoelectronics, whereby electrons evolving in the vacuum regions defined by nanostructures will be generated, guided, and sampled at the nanoscale, thus acting as probes to excite, detect, image, and spectrally resolve polaritonic modes (e.g., plasmons, optical phonons, and excitons) with atomic precision over sub-femtosecond timescales. I will exploit the wave nature of electrons, extending the principles of nanophotonics from photons to electrons, therefore gaining in spatial resolution (by relying on the large reduction in wavelength) and strength of interaction (mediated by Coulomb fields, which in contrast to photons render nonlinear interactions ubiquitous when using free electrons). I will develop the theoretical and computational tools required to investigate this unexplored scenario, covering a wide range of free-electron energies, their elastic interactions with the material atomic structures, and their inelastic coupling to nanoscale dynamical excitations. Equipped with these techniques, I will further address four challenges of major scientific interest: (i) the fundamental limits to the space, time, and energy resolutions achievable with free electrons; (ii) the foundations and feasibility of pump-probe spectral microscopy at the single-electron level; (iii) the exploration of quantum-optics phenomena by means of free electrons; and (iv) the unique perspectives and potential offered by vertically confined free-electrons in 2D crystals. I will face these research frontiers by combining knowledge from different areas through a multidisciplinary theory group, in close collaboration with leading experimentalists, pursuing a radically new approach to study and control the nanoworld.

Partners
Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1K
    download downloads 2K
  • 1K
    views
    2K
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::814342d9c35fea81092a0cb9f5d36e0a&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down