Powered by OpenAIRE graph
Found an issue? Give us feedback

CO2EXIDE

CO2-based Electrosynthesis of ethylene oXIDE
Funder: European CommissionProject code: 768789 Call for proposal: H2020-SPIRE-2017
Funded under: H2020 | RIA Overall Budget: 5,420,110 EURFunder Contribution: 5,420,110 EUR
visibility
downloads
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
52
69
Description

The CO2EXIDE project aims at the development of a combined electrochemical-chemical technology for the simultaneous “200%” conversion of CO2 to ethylene at the cathode, water oxidation to hydrogen peroxide at the anode and a subsequent chemical conversion of both intermediates to ethylene oxide and oligo-/polyethylene glycol in a cascade, boosting this technology from TRL4 to TRL6. The CO2EXIDE technology combines a modular nature for the feasibility of a decentralised application, a high energy and material efficieny/yield and the substitution of fossil based production of ethylene oxide. The CO2EXIDE technology will be combinable with renewables and allows for the direct creation of products, which can be integrated into the existing supply chain. The reactions will be operated at low temperatures and pressures and forecast significant improvements in energy and resource efficiency combined with an enormous reduction of GHG emissions. All improvements will be quantitated using Life Cycle Assessment. The CO2EXIDE approach will bring together physicists, chemists, engineers and dissemination and exploitation experts from 5 universities/research institutions, 3 SMEs and 2 industries, innovatively joining their key technologies to develop and exploit an unprecedented process based on CO2, renewable energy and water to combine the chemical and energy sector. Within 36 months project duration, the CO2EXIDE technology will undergo a thorough material and component R&D programme. A 1kW PEM electrolyser for CO2-reduction and water oxidation in combination with an ethylene enrichment unit and subsequent chemical conversion cascade reactor will be manufactured to produce ethylene oxide as intermediate for oligo-/polyethylene glycol synthesis. This will prove the achievement of the quantified techno-economic targets of CO2EXIDE.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 52
    downloads downloads 69
  • 52
    views
    69
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::8855d6090decb9faeedc6075045bd757&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down