
Loading
There is an increasing demand for advanced materials with temperature capability in highly corrosive environments for aerospace. Rocket nozzles of solid/hybrid rocket motors must survive harsh thermochemical and mechanical environments produced by high performance solid propellants (2700-3500°C). Thermal protection systems (TPS) for space vehicles flying at Mach 7 must withstand projected service temperatures up to 2500°C associated to convective heat fluxes up to 15 MWm-2 and intense mechanical vibrations at launch and re-entry into Earth’s atmosphere. The combination of extremely hot temperatures, chemically aggressive environments and rapid heating/cooling is beyond the capabilities of current materials. Main purpose of C3HARME is to design, develop, manufacture, test and validate a new class of out-performing, reliable, cost-effective and scalable Ultra High Temperature Ceramic Matrix Composites (UHTCMCs) based on C or SiC fibres/preforms enriched with ultra-high temperature ceramics (UHTCs) capable o
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::aef4ebc4aabf562f8095cf6dcc82206a&type=result"></script>');
-->
</script>