Powered by OpenAIRE graph
Found an issue? Give us feedback

DACOMAT

Damage Controlled Composite Materials
Funder: European CommissionProject code: 761072 Call for proposal: H2020-NMBP-2017-two-stage
Funded under: H2020 | RIA Overall Budget: 5,873,920 EURFunder Contribution: 5,873,920 EUR
visibility
downloads
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
977
1K
Description

Society is dependent upon the continuous functioning of critical infrastructures such as road bridges and energy supply. These infrastructures are exposed to high loads and harsh environmental conditions through their lifetime in operation and materials failures lead to down time having vast negative effects on productivity and well-being in society in terms of lost time, shortened life cycles and increased service costs. So engineers face the challenge to develop durable materials compatible with industrial standards in an economically viable way. Composites represent attractive materials and are increasingly used for such applications since they demonstrate low weight, high strength and stiffness and high environmental resistance. However composites suffer from sudden brittle failure mainly due to production defects and handling damages; this is currently handled by strict quality and process control from manufacturers, resulting in high production costs which can represent a barrier to introduction and development of composites in a wide range of applications. The general objective of DACOMAT is to develop more damage tolerant and damage predictable low cost composite materials in particular aimed for used in large load carrying constructions like bridges, buildings, wind-turbine blades and off shore structures. The developed materials and condition monitoring solutions will enable composite structures to be designed and manufactured as large parts allowing for more and larger manufacturing defects and the need for manual inspection to be dramatically reduced. A demonstration of the materials’ performances in relevant environment will be conducted in two business cases: wind turbine blades and road bridge beams, while both LCC and LCA analysis will also strengthen the project’s credibility.The project gathers the full industrial value chain: ranging from materials development and manufacturing to composite parts demonstrators and standardisation.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 977
    downloads downloads 1K
  • 977
    views
    1K
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::fd4c21ea07fece1930e6f670dc434a11&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down