Powered by OpenAIRE graph
Found an issue? Give us feedback

Health assessment across biological length scales for personal pollution exposure and its mitigation (INHALE)

Funder: UK Research and InnovationProject code: EP/T003189/1
Funded under: EPSRC Funder Contribution: 2,793,920 GBP
visibility
downloads
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
277
1K

Health assessment across biological length scales for personal pollution exposure and its mitigation (INHALE)

Description

To assess the impact of pollution on personal health in outdoor/indoor urban environments, we will develop a physics-based multi-scale approach across biological length scales from the cell, lung, person (surrounded by green infrastructure) up to the neighbourhood scale. We will examine the biophysical components of pollutants that determine their cellular fate, their potential for cell and tissue damage and how this relates to health outcomes. We will use airway models to assess particle deposition and effects on people's health as well as trace the pollution particles through an individual person down to the cellular level. The focus of the analysis will be on the immediate micro-environment (~20m) around a person. The integrated modelling will also represent various intervention scenarios (e.g. roadside hedges or medication for at-risk people such as asthmatics) to assess reduced exposure and corresponding changes in health outcomes. These biologic parameters of exposure will be integrated with the cardio-respiratory response to pollution in 80 participants using a combination of cardio-respiratory, physical activity and personal fine particles exposure monitors. We will numerically model the pollution and air flows at the neighbourhood scale and apply an approach centred on the impact of pollution on health to all aspects of modelling, sensor placement and management of the environment. Thus, any mitigation strategies can be designed to minimize the impact of pollution on health. We will model the dispersion of particles and their micro-physics within the neighbourhood with an emphasis on green infrastructure and their ability to mitigate pollution e.g. hedges can reduce heavy metal pollution. We will examine the physical effects and functional chemistry of the metals and organic components of particles at the ultracellular level to determine their interference to cell metabolism and health. We will use modelling to predict the outcomes of cell fate, so that we can back propagate biological potential of pollution particles (say) through to the individual and into the neighbourhood scale. Thus, modelling will be key at each length scale.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 277
    downloads downloads 1K
  • 277
    views
    1K
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::04829f044db45df71f95f8b0da5199a1&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down