Powered by OpenAIRE graph
Found an issue? Give us feedback

The Aerosol-Cloud Uncertainty REduction project (A-CURE)

Funder: UK Research and InnovationProject code: NE/P013406/1
Funded under: NERC Funder Contribution: 647,509 GBP
visibility
downloads
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
563
541

The Aerosol-Cloud Uncertainty REduction project (A-CURE)

Description

A-CURE tackles one of the most challenging and persistent problems in atmospheric science - to understand and quantify how changes in aerosol particles caused by human activities affect climate. Emissions of aerosol particles to the atmosphere through industrial activity, transport and combustion of waste have increased the amount of solar radiation reflected by the Earth, which has caused a cooling effect that partly counteracts the warming effect of greenhouse gases. The magnitude of the so-called aerosol radiative forcing is highly uncertain over the industrial period. According to the latest intergovernmental panel (IPCC) assessment, the global mean radiative forcing of climate caused by aerosol emissions over the industrial period lies between 0 and -2 W m-2 compared to a much better understood and tighter constrained forcing of 1.4 W m-2 to 2.2 W m-2 due to CO2 emissions. This large uncertainty has persisted through all IPCC assessments since 1996 and significantly limits our confidence in global climate change projections. The aerosol uncertainty therefore limits our ability to define strategies for reaching a 1.5 or 2oC target for global mean temperature increase. A-CURE aims to reduce the uncertainty in aerosol radiative forcing through the most comprehensive ever synthesis of aerosol, cloud and atmospheric radiation measurements combined with innovative ways to analyse global model uncertainty. The overall approach will be to produce a large set of model simulations that spans the uncertainty range of the model input parameters. Advanced statistical methods will then be used to generate essentially millions of model simulations that enable the full uncertainty of the model to be explored. The spread of these simulations will then be narrowed by comparing the simulated aerosols and clouds against extensive atmospheric measurements. Following A-CURE, improved estimates of aerosol forcing on regional and global scales will enable substantial improvements in our understanding of historical climate, climate sensitivity and climate projections. We will use the improved climate model with narrowed uncertainty to determine the implications for reaching either a 1.5 or 2oC target for global mean temperature increase.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 563
    downloads downloads 541
  • 563
    views
    541
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::04da67efe9affac35c7e8f5260bf4731&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down