Powered by OpenAIRE graph
Found an issue? Give us feedback

Robust Legged Locomotion for Autonomous Mobility in Challenging Environments

Funder: UK Research and InnovationProject code: EP/S002383/1
Funded under: EPSRC Funder Contribution: 299,993 GBP
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
95
457

Robust Legged Locomotion for Autonomous Mobility in Challenging Environments

Description

Robots with legs and arms are likely replace most manual labour, especially in environments that are dangerous for humans, and revolutionize multiple services domains in the long-term. One of the main advantages of legged robots is that they can discretely make and break contact with the environment, in contrast to wheeled or tracked systems that require continuous contact with the ground. This way, robots with legs can modify their area of support from step to step, a requirement when negotiating challenging terrain and environments primarily built for humans. Also, the use of legs decouples the body from the robot's foot-print. This allows for wide areas of support with only small footprints, a major advantage when navigating passages, tight spaces, cluttered environments, etc. The high articulation of legged systems also allows them to manipulate their center of mass, so that the system's dynamics can be exploited for the task at hand, and to dynamically reconfigure their workspace for the benefit of their payload, i.e., increase a manipulator arm's reach or position a sensor suite in a preferred pose. The autonomous locomotion framework that we will develop will enable current technology to be used in industrial scenarios, especially in hazardous environments that are primarily built for humans. Examples of such places are nuclear power plants, factories, oil & gas facilities, etc., where typically industrial stairs are used and a system will need to overcome various terrain difficulties, such as step over pipes, gaps, climb up/down stairs, manoeuvre through narrow passageways. Legged systems in such settings can have a large variety of roles; starting from inspection, automated monitoring of the condition of a facility; maintenance, periodic recurring tasks that need to be performed typically by a human, to intervention when an anomaly is detected.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 95
    download downloads 457
  • 95
    views
    457
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c21d27f2b11c13c51ef2627626553b60&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down