Powered by OpenAIRE graph
Found an issue? Give us feedback

Innovative concepts from Electrodes to Stacks

Funder: UK Research and InnovationProject code: EP/M023508/1
Funded under: EPSRC Funder Contribution: 1,004,390 GBP
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
14
49

Innovative concepts from Electrodes to Stacks

Description

The goal of this Korea-UK research initiative is to address Research theme 1 (Innovative concepts from Electrodes to stack) of the EPSRC-KETEP Call for Collaborative Research with Korea on Fuel Cell Technologies. The proposal also covers some aspects of Research theme 2 (Predictive control for performance and degradation mitigation). Hence, this research is associated with improving the lifetime and performance of polymer electrolyte fuel cells. Within this project we will develop new corrosion resistant catalyst supports and catalyse those supports utilising a new catalysis technique. We will also examine the development of porous bipolar plates and see how we can integrate those bipolar plates and catalysts within a fuel cell. We will trial the materials in test stacks and look at the performance and longevity of these new materials. Parallel to this work, we will use state of the art x-ray tomography and other imaging techniques to assess the performance of the materials under real operating conditions. Information from these tests will allow us to develop a methodological framework to simulate the performance of the fuel cells. This framework will then be used to build more efficient control strategies for our higher performance fuel cell systems. We will also build a strong and long-lasting collaborative framework between Korea and the UK for both academic research and commercial trade. The project will benefit from the complementary strengths of the Korean and UK PEFC programmes, and represents a significant international activity in fuel cell research that includes a focus on the challenging issues of cost reduction and performance enhancement. The project will have particularly high impact and added value due to a strong personnel exchange programme with researchers spending several months in each other's labs; highly relevant industrial collaboration; and links with the H2FC Supergen. We have strong support from industrial companies in both the UK and Korea who will support our goals of developing new catalysts for fuel cells (Amalyst - UK, and RTX Corporation - Korea), new corrosion resistant porous bipolar plates (NPL-UK; Hyundai Hysco and Hankook tire (Korea)), and fuel cell and system integrators (Arcola Energy and Intelligent Energy (UK)).

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 14
    download downloads 49
  • 14
    views
    49
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ca7108345bd4c23508dfc689b4e13a57&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down