Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Non-Genetic Inheritance of Hypoxia Tolerance in Fishes: Dynamics and Mechanisms

Authors: Burggren, Warren W.; Padilla, Pamela A.;

Non-Genetic Inheritance of Hypoxia Tolerance in Fishes: Dynamics and Mechanisms

Abstract

Data management plan for the grant, "Non-Genetic Inheritance of Hypoxia Tolerance in Fishes: Dynamics and Mechanisms." Research quantifying the inheritance of tolerance to low oxygen in a model fish and then determine the tolerance mechanisms, at organismal to molecular levels, that are passed on from parents to their offspring. The investigators will not only focus on conventional, well-studied genetic mechanisms for inheritance, but will explore so-called “epigenetic” forms of inheritance that may transfer parental characteristics for only a generation or two. Such “temporary inheritance” might actually require less energy and be more beneficial to a species than the more permanent form of genetic inheritance. This project will quantify non-genetic inheritance of hypoxia tolerance in zebrafish as a model organism and then identify underlying mechanisms, at organismal to molecular levels, in parents and in their progeny. Specifically, this project will quantify non-genetically inherited traits that allow hypoxia tolerance, determine “wash-in” and “wash-out” (i.e., the dynamics) of hypoxia-tolerant phenotypes across multiple generations, and establish epigenetic mechanism(s) of non-genetic inheritance in subsequent generations. The information provided by this project will allow biologists to better predict, and perhaps even mitigate, the negative consequences of future episodes of low oxygen in rivers and lakes.

Country
United States
Related Organizations
Keywords

climate change, fish biology, hypoxia tolerance, data management plans, epigenetic inheritance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average