Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Poly-Vinylidene Fluoride Based Vibration Spectrum Sensors and Energy Harvestors

Authors: Nyayapati, Mahidhar Ramesh;

Poly-Vinylidene Fluoride Based Vibration Spectrum Sensors and Energy Harvestors

Abstract

Mechanical vibrations in large structures such as buildings, bridges, dams and critical frequencies in large machinery generally have low frequencies (100Hz-1000Hz). To monitor large areas of such structures we need huge network of low cost, easily manufacturable, self-powered and stand-alone vibration spectrum sensors. The sensors should also consume very little power during their overall operation cycle and have moderately high frequency resoultion. The thesis provides mathematical analysis, design and development of stand-alone, low frequency vibration spectrum analyzer .A mechanically stretched polymer piezoelectric membrane, which has a fixed length and tension, can act as a single frequency detector due to its unique resonant frequency. Stretching multiple ribbons of diffferent lengths and tensions, a vibration spectrum analyzer, which gives the Fourier frequency components present in an arbitrary mechanical input vibration, can be designed. The thesis presents a detailed description of experiments to evaluate a low frequency vibration spectrum analyzer system that accepts an incoming input vibration and directly provides the spectrum as output. Polymer piezoelectric materials being easily manufacturable these sensors can be deployed in wide area sensor networks that monitor large structures. The thesis also shows design of a vibration energy harvesting system based on the concept of harvesting energy at low frequencies. The need for developing such an energy harvesting system arises from the necessity of making the vibration sensor, self-powered. Multiple experimental tests were performed before developing a prototype vibration energy harvesting circuit.

Country
India
Keywords

690, Vibration Spectrum Sensing, Vibration Sensing, Materials Science, Energy Harvestors, Harvesting Energy, 621, Piezoeletricity, Vibration Spectrum Sensors, Vibration Energy Harvestors, Energy Harvesting, Vibration Energy Harvesting System, Polymer Piezoelectric Materials, Poly-Vinylidene Difluoride(PVDF), Vibration Spectrum Analyzer, Mechanical Vibrations

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average