Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Air thermosiphon solar heating system: the Jones house, Santa Fe, New Mexico

Authors: Hunn, B.D.; Jones, M.M.;

Air thermosiphon solar heating system: the Jones house, Santa Fe, New Mexico

Abstract

A hybrid passive/active solar heating system, featuring a passive air thermosiphon loop, is described. Heated air is supplied to a rock storage bin, coupled with blower-driven air distribution to the house. The house, of 246 m/sup 2/ (2650 ft/sup 2/) heated area and located in Santa Fe, New Mexico, also includes a greenhouse located under the planar collector array. Architectural features and construction details of the house, the solar collector, storage, and distribution system are presented. Representative results of three months of monitoring by the Los Alamos Scientific Laboratory of collector, rock bin, and greenhouse temperatures, as well as outside ambient temperature and insolation, are reported and discussed. Data recorded hourly since the system was placed in operation in early February 1978, show temperatures in the rock bin in excess of 71/sup 0/C (160/sup 0/F) and in the collector absorber mesh in excess of 93/sup 0/C (200/sup 0/F). Delivery temperatures from the charged bin, without auxiliary boost, range from 38 to 54/sup 0/C (100 to 130/sup 0/F).

Country
United States
Related Organizations
Keywords

Design, Monitoring, New Mexico, Residential Buildings, Rock Beds, Storage, Convection, Southwest Region, Solar Heating Systems, Insolation, Heaters, Architecture, Solar Air Heaters, Air Heaters, Buildings, Thermosyphon Effect, Ambient Temperature, 14 Solar Energy, Greenhouses, Energy Storage, Usa 140901* -- Solar Thermal Utilization-- Space Heating & Cooling, Heating Systems, Passive Solar Heating Systems, North America, Sensible Heat Storage, Solar Collectors, Houses, Heat Storage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average