Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of a modified dynamic energy and greenhouse gas reduction planning approach through the case of Indian power sector

Authors: Mathur, Jyotirmay;

Development of a modified dynamic energy and greenhouse gas reduction planning approach through the case of Indian power sector

Abstract

Energy and Environmental Analysis is a method to evaluate utility of any energy system by finding the requirement of energy and resulting emissions through all the materials and processes used to build and use any system over its entire life and also to demolish it at the end of life. Relationship between the cumulative energy demand and cumulative emissions with energy output from the system establishes indicators for its utility in terms "Energy Yield Ratio" and "Emission Coefficient". Energy and Environmental Planning is a macroscopic exercise used for conducting futuristic studies through dynamic assessment of the defined reference energy system comprising of many alternatives and constraints. It is done to find the optimum solution for certain objective function often system cost minimization through meeting system requirements such as the energy demand. To establish link between these two approaches, a new methodology has been formulated in this work. It has been done through linking the Cumulative Energy Demand (a system specific, energy analysis parameter of static nature), and the overall energy demand which is a dynamic parameter governed by its rate of growth. With the help of this new method, Cumulative Energy Demand of any system acts as a barrier for growth as it takes away energy from the overall energy pool. The value of maximum growth obtained through equilibrium equations has been exogenously supplied to the energy planning tool and thus the link between the two different approaches has been established. This work demonstrates the method for each of the above approaches separately and then jointly, involving various technologies for power generation. A much widely used energy planning software MARKAL (MARket ALlocation), has been used for carrying out planning related analysis which treats the defined Reference Energy System as a dynamic bottom-up problem and finds the objective function through obtaining a partial equilibrium at all intermediate stages. The above mentioned methodology has been ...

Country
Germany
Related Organizations
Keywords

670, Fakultät für Ingenieurwissenschaften » Institut für Energie- und Umweltverfahrenstechnik, greenhouse gases, india, energy analysis, ddc:67, ddc:670, Energy planning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research