
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Wpływ cyrkulacji atmosferycznej na opady w Tatrach oraz Czarnohorze = Influence of atmospheric circulation on precipitation in Tatra and Chornohora Mts. ; Przegląd Geograficzny T. 93 z. 1 (2021)
24 cm ; While significant increases in air temperature are being observed in the context of climate change, precipitation characteristics, indicators and indices seem to be changing in a more regionally-variable manner. High-mountain areas prove particularly subject to fluctuations and changes of climate, given that mountains serve as barriers to masses of air flowing over them, with the result that atmospheric precipitation totals are high in the context of the so-called orographic rainfall. Overall, the Chornohora represents the highest range anywhere in Ukraine’s Carpathian Mts, as there are six peaks over 2000 m a.s.l. capable of serving as a barrier running NW-SE. Nevertheless, the main ridge of the High Tatras (of the Slovakia-Poland borderland) is even higher and runs W-E. Each massif is some 30 km in length, while the two ranges are separated by a distance of almost 350 km. Main drainage divides run along the highest ridges here, with the Tatras separating the drainage basins of the Vistula and Danube, while the Chornohora represent a divide between the Prut and Tysa basins. The aim here has been to present characteristics of atmospheric precipitation in Tatra and Chornohora Mts. as these are seen to relate to atmospheric circulation. To this end, the dependent relationship between intensity of precipitation and atmospheric circulation was examined exhaustively, with changes in the latter considered from the point of view of intensity of precipitation in the massifs under study, and with trends for precipitation over the study period also looked for.The Niedźwiedź (2017) classification of types of atmospheric circulation was applied, with annual values calculated for circulation indicators P (a W-E inflow), S (a S-N inflow) and C (a cyclonic/anticyclonic inflow). Overall, the study drew on 1961‑2015 daily precipitation data from the north-eastern slope of Chornohora Mts. (as represented by Ukraine’s Pozhyzhevska weather station, PO, 1451 m a.s.l.), as well as the north slope of the Tatra Mts. (as ...
trends, zmiana klimatu, climate change, variability, orographic precipitation, Carpathians, opad orograficzny, góry, zmienność, mountains, trendy, Karpaty
trends, zmiana klimatu, climate change, variability, orographic precipitation, Carpathians, opad orograficzny, góry, zmienność, mountains, trendy, Karpaty
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
