Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of low- and high-temperature thermal-alkaline pretreatments on anaerobic digestion of waste activated sludge

Authors: Zheng, Tianlong; Zhang, Ke; Chen, Xiangyu; Ma, Yingqun; Xiao, Benyi; Liu, Junxin;

Effects of low- and high-temperature thermal-alkaline pretreatments on anaerobic digestion of waste activated sludge

Abstract

To compare the effects of low- and high-temperature thermal-alkaline pretreatments (LTTAP, 60 +/- 1 degrees C, pH 12.0 +/- 0.1, 30 min and HTTAP, 160 +/- 1 degrees C, pH 12.0 +/- 0.1, 30 min, respectively) on anaerobic digestion (AD) of waste activated sludge, long-term and semi-continuous experiments were conducted in three laboratory continuous stirred tank reactors. The experimental results showed that the two pretreatments increased the methane yield of sludge from 89.20 +/- 2.41 mL/g added volatile solids (VS) to 117.50 +/- 5.27 mL/g added VS (LTTAP) and 156.40 +/- 2.99 mL/g added VS (HTTAP). After AD, the reduction of sludge (volatile solid) increased from 32.91 +/- 0.27% to 44.17 +/- 1.53% (LTTAP), and 50.86 +/- 1.18% (HTTAP), and the abundance of pathogenic bacteria decreased from 6.53% to 0.38% (LTTAP) and 0.14% (HTTAP). LTTAP enhanced both hydrogentrophic and acetoclastic methanogenis and HTTAP only enhanced acetoclastic methanogenis. Additionally, the energy efficiency of HTTAP and its subsequent AD was lower than that of LTTAP and its subsequent AD.

Country
China (People's Republic of)
Related Organizations
Keywords

Energy efficiency, Biotechnology & Applied Microbiology, Energy & Fuels, 660, Anaerobic digestion, High-temperature thermal-alkaline pretreat-ment, Low-temperature thermal-alkaline pretreat-ment, Waste activated sludge, Agricultural Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average