
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
EFFECTS OF PRESSURE ON LIGNOCELLULOSIC BIOMASS FAST PYROLYSIS
The present work focuses on the effects of pressure on the quality of char and primary tar produced from fast pyrolysis of lignocellulosic biomass. Heat treatment has been carried out in a heated strip reactor (HSR) at 1573 K in nitrogen at 2, 4, 8 bar, with holding times of 3 s and heating rate of 104 K/s. The equipment allows quenching the volatiles as soon as they are emitted from the particles and collecting them for further chemical analyses. The char samples are also collected for thermogravimetric analysis in air. The DTG curves in air of char prepared at 2 bar shows two resolved peaks. Increasing the pressure of heat treatment from 2 to 4 bar has a minor effect on char reactivity, whereas further increase to 8 bar drastically changes the char combustion patterns, and the DTG curves exhibit only one well defined peak. For all the process conditions investigated, Oxo-aromatics are the dominant species in the tar. Benzendiol prevails in the 2 bar tar, followed by oxo-aromatic compounds related to lignin structure, while PAHs are mainly present as Fluorene. When pressure increases, Phenols compounds drastically prevail, and PAHs as Anthracene and Pyrene appear.
pressure, biomass, Pyrolysis
pressure, biomass, Pyrolysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
